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that endogenizes return predictability. In the experiments that we consider, the
estimation issues are so severe that simple unconditional consumption and portfolio
rules actually outperform (in a utility cost sense) both simple and bias-corrected
empirical estimates of conditionally optimal policies.

Keywords: Return predictability; general equilibrium model; empirical experiments;
optimal portfolio rules; relative utility cost.

1. Introduction

If monthly or quarterly excess returns on the market are predictable, then

how should a rational investor adjust her consumption and portfolio choices

in response to estimates of changes in expected returns?1 Theoretically, time-

varying expected returns introduce hedging demands and horizon e®ects into

the investor's demand for the risky asset, and the qualitative nature of these

e®ects has long been understood. A number of recent studies have attempted

to quantify hedging demands and horizon e®ects by calibrating versions of

the investor's problem to the amount of predictability found in US data.

These quantitative exercises have all been constructed in partial equilib-

rium. They start with a speci¯c choice of the utility function of an investor,

with a pre-determined investment horizon, and a description of the invest-

ment opportunity set, which consists of assumptions about the investor's

initial wealth, non-asset income (if any), and the predictability of market

returns in excess of the return on a risk-free asset. Given these basic building

blocks, there are both frequentist and Bayesian approaches to evaluating the

importance of predictability.

Frequentist studies, such as Balduzzi and Lynch (1999) and Campbell and

Viceira (1999), are calibration exercises. They use point estimates of the

parameters of the assumed data-generating process (DGP) and then produce

point estimates of the optimal decision rules, including hedging demands and

horizon e®ects. There is no explicit adjustment for uncertainty with respect to

any of the features of the model. In contrast, Bayesian analyses, such as Kandel

and Stambaugh (1996), Barberis (2000), or Xia (2001) explicitly incorporate

some aspects of uncertainty into the computation of the investor's rules.2

1See Fama (1991) for an early summary of a number of studies of predictability. See also
Campbell et al. (1997) and Cochrane (1999).
2These studies address uncertainty about the value of a parameter(s) in a linear model. As a
result, even this approach may su®er from a problem of mis-speci¯cation relative to the true
data generating process. For example, in a model where the true relationship between dividend
yields and excess returns is non-linear, these Bayesian models would be incorporating learning,
but of the wrong kind.

M. Carlson et al.

1550010-2

Q
ua

rt
. J

. o
f 

Fi
n.

 2
01

5.
05

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
H

A
N

G
H

A
I 

JI
A

O
T

O
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



In almost all cases, the DGP for excess returns is speci¯ed, exogenously, as

a restricted version of a ¯rst-order vector autoregression (VAR) of (contin-

uously compounded) excess returns and the (log of the) market dividend

yield, driven by independent normally distributed shocks.3 This choice has

the virtue of simplicity, and it is generally regarded as an adequate approx-

imation to the conditional distribution of returns and dividend yields. By

necessity, these analyses are all based on the single sample path of realized US

data.

We explore the quantitative impact of return predictability on a rational

investor's optimal consumption and portfolio choices using a general equi-

librium (GE) model as a laboratory for generating predictable returns. There

are two advantages to using an explicit equilibrium model. First, the nature

of return predictability and the form of the stochastic process for returns are,

by construction, consistent with dynamic optimization of commonly used

preferences. Second, our analysis is explicit about how portfolio rules relate to

risk and are consistent with market clearing.4

The model is solved (numerically) and then simulated to produce asset

returns and dividend yields. The dynamics of endogenously generated

monthly excess returns and dividend yields are similar to those in the US

data, at both short and long horizons. In particular, since there is little

predictability in the monthly returns, the (conditional) Sharpe ratio in the

simulated data, at the monthly frequency, does not exhibit substantial var-

iation across states. As a result, the optimal, GE portfolio allocations of the

time-separable, constant relative risk aversion investor varies by roughly 9%

across extreme states.

3Avramov (2002) considers multiple regressors using a Bayesian approach to evaluating
model uncertainty, still within a linear model. Brandt (1999) estimates the optimal con-
sumption and portfolio rules using a non-parametric estimate of excess return dynamics,
which allows for nonlinearity in the conditional mean of excess returns. Aït-Sahalia and
Brandt (2001) extend this approach to a more general consideration of time-varying ¯rst and
second moments.
4As Cochrane (1999) notes, in the absence of an explicit understanding of the source
of return predictability, the implications for portfolio rules are di±cult to interpret: \If
the (forecasted) premium is real, an equilibrium reward for holding risk, then the average
investor knows about it but does not invest because the extra risk exactly counteracts
the extra average return . . . If the risk is irrational, then by the time you and I know about
it, it's gone . . . If the (forecasted premium) comes from a behavioral aversion to risk, it is
just as inconsistent with widespread advice as if it were real. We cannot all be less be-
havioral than average, just as we cannot all be less exposed to a risk than average
. . ."(p. 72).

Equilibrium Asset Return Predictability
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In examining the performance of quantitative estimates of portfolio

rules applied to the simulated returns and dividend yields, we ¯nd that:

(i) Quantitative rules constructed from simple ordinary least squares (OLS)

point estimates of the DGP result in implied portfolio rules that are clearly

biased and dramatically overstate the sensitivity of a rational investor's

portfolio choice to the actual information in dividend yields. (ii) Since con-

ditional means are di±cult to measure precisely, the variance of the empirical

optimal rules across multiple simulated histories of the model economy is very

large. This suggests that calibration exercises based on point estimates from a

single sample path can be very misleading. (iii) While a bias-correction

strategy based on the standard linear VAR assumption for the DGP for

returns improves upon the simple OLS-based empirical strategy, it still

generates large utility costs for a signi¯cant proportion of the simulated

model histories, when compared to the true optimal rules in the equilibrium

model. (iv) In fact, in this setting, a simple unconditional (U) policy con-

structed from the point estimates of U mean and variance outperform the

conditional rules, in a utility cost sense.

The decision rules of an investor with the same utility function and level of

risk aversion as an agent in the model economy, constructed from estimates of

a linear relationship between excess returns and dividend yields in the sim-

ulated data, show substantial variation over dividend yield states. For ex-

ample, along a single sample path with the median level of predictability

across the simulations of the economy, the portfolio weight in the risky asset

ranges from �10% to nearly 350%. Furthermore, under the empirical dy-

namics, the true optimal (GE) policy appears to have a substantial utility

cost, relative to the empirical rules. A hypothetical econometrician attempting

to quantify the optimal rules would conclude that the investor would bewilling

to forego between 20% and 40% of her initial wealth to switch away from the

trueGE rule towards whatwe know to be only an optimumundermis-speci¯ed

empirical dynamics.

These single path results are broadly consistent with the existing liter-

ature. For example, Balduzzi and Lynch (1999) ¯nd that an investor facing

no transactions costs, a coe±cient of relative risk aversion equal to six,

consumption at intermediate dates, and a 20-year horizon would be willing

to pay nearly 11% of her initial wealth to have access to the information

contained in a linear model that predicts risky (real) asset returns using

the lagged market dividend yield. While 11% is at the low end of the range

of utility cost calculations (based on wide di®erences in assumptions used

in the literature), it still seems large, when compared to the level of

M. Carlson et al.
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predictability in monthly returns.5 Campbell and Viceira (1999), using

di®erent utility assumptions and an in¯nite-horizon investor, ¯nd that

optimal investment varies from 60% to 140% (for expected log excess

returns between 0% and 5%) and that suboptimal portfolio rules can imply

large utility losses.6

The remainder of the paper is organized as follows: The model economy is

de¯ned in Sec. 2, and return dynamics are examined in Sec. 3. Section 4

compares a variety of consumption and investment policies with di®erent

assumptions about return dynamics. Utility cost calculations are contained in

Sec. 5. The conclusions and suggestions for future research are in Sec. 6.

Appendix A provides a proof of the proposition stated in Sec. 2.2, and

Appendix B describes the algorithm used to solve the model and simulate the

return data. Appendix C describes the optimal consumption/portfolio

problem in a partial equilibrium setting, and it contains a description of the

algorithm used to compute the optimal rules.

2. The Model Economy

2.1. Assumptions

A1: Decisions about the consumption of the single good and investment in

the two marketed assets can be made continuously in time over an in-

¯nite horizon.

A2: There are two agents. Each agent is de¯ned by the pair fðUi;W0iÞ;
i ¼ 1; 2g, where Ui is the utility function and W0i is the initial wealth

allocation. Each agent is assumed to be representative of a large number

of identical agents of the same type and, therefore, takes market prices as

5Balduzzi and Lynch (1999) do not report the variation in the optimal risky asset holdings
across dividend yield states for an investor who consumes at intermediate dates. However,
the risky asset share for an otherwise identical terminal value of wealth maximizer varies
between 30% and 84%, over most dividend yield states. Balduzzi and Lynch (1999) restrict
the allocation to the risky asset to lie between 0% and 100% of the period wealth, as does
Barberis (2000). This restriction may further reduce the utility cost as the conditional
optimal policies may involve either short-selling or borrowing, as demonstrated by Brandt
(1999).
6For example, for a time-separable, constant relative risk aversion investor with a coe±cient of
risk aversion equal to 10 who follows an optimal consumption policy but who ignores the
information in predictable returns, the percentage loss in the value function is roughly 85%.
This calculation is reported in Campbell and Viceira (2000), which corrects the calibration
exercise in Campbell and Viceira (1999).

Equilibrium Asset Return Predictability
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given. The utility functions for the two agent types are de¯ned as fol-

lows:

(i) Time-Separable (T-S) Agent: This agent type has a standard time-

separable power utility function:

U1ðfC1;tg1
t¼0Þ ¼ E0

Z 1

0

expð��tÞ �1

1� �1
dt

� �
; ð1Þ

where � is a constant time-discount parameter and C1;t is the level of

T-S Agent's time t consumption, and �1 is the coe±cient of relative

risk aversion.

(ii) Habit Agent: This agent type has the utility function:

U2ðfC2;tg1
t¼0Þ ¼ E0

Z 1

0

expð��tÞ ðC2;t � �XtÞ1��2 � 1
dt

� �
; ð2Þ

where C2;t is the level of the Habit Agent's time t consumption, Xt is

an index of past aggregate consumption; i.e., the agent has external

habit formation. � > 0 is a constant that de¯nes the intensity of the

impact of past consumption on current utility. The habit index is

de¯ned as

Xt ¼ X0 expð��tÞ þ �

Z t

0

exp½�ðs � tÞ�Ysds; ð3Þ

where Yt is the exogenous aggregate endowment, � > 0 de¯nes the

persistence of the impact of prior consumption on current utility. �2
is a utility curvature parameter, but as shown in Campbell and

Cochrane (1999), it is not equal to the coe±cient of relative risk

aversion. The Habit Agent has the same time-discount parameter as

the T-S Agent.

A3: The natural logarithm of the exogenous aggregate endowment of the

consumption good, lnY ðtÞ, is:
d lnYt ¼ �dt þ �dBt ; ð4Þ

where Bt is a 1-dimensional Brownian motion.

Chapman (1998) demonstrates that in an endowment economy where

the representative agent has internal habit formation preferences, the

aggregate endowment process in Eq. (4) is incompatible with strictly

positive state prices. A modi¯cation (used in the simulations reported

below) to the geometric Brownian motion of Eq. (4) that preserves

simple dynamics in the endowment growth rate and ensures positive

M. Carlson et al.
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state prices is to set the di®usion coe±cient of Eq. (4) to zero whenever

Y ðtÞ ¼ ��

Z t

0

expð�ðs � tÞÞY ðsÞds; ð5Þ

where � � �, which re°ects the aggregate endowment back into the

permissible region of the state space. In the simulations reported below,

the constraint in Eq. (4) is never binding (see Detemple and Zapatero

(1991) for a general treatment of the restrictions on preferences and

endowments required to ensure strictly positive state prices in a repre-

sentative agent internal habit model).

A4: There are two traded assets:

(i) A default-risk free bond that is in zero net supply. Its price is

denoted S 0ðtÞ, and
dS 0

t

S 0
t

¼ rtdt;

where rt is the instantaneous risk-free rate.

(ii) A risky asset, with an ex-dividend price process S 1
t , that is a claim

to future realizations of the aggregate endowment. The number of

shares of the asset is normalized to one.

2.2. Equilibrium

The T-S Agent's optimization problem, at date t, is

max
fC1;s;�1;0;s;�1;1;sg1

s¼t

Et

Z 1

t

expð��ðs � tÞÞ C
1��1
1;s � 1

1� �1
ds

" #
; ð6Þ

subject to the budget constraint

�1;0;tS
0
t þ �1;1;tS

1
t þ

Z t

0

C1;udu

¼ W01 þ
Z t

0

�1;0;udS
0
u þ

Z t

0

�1;1;udS
1
u þ

Z t

0

�1;1;udYu; ð7Þ

where C 1;u > 0 is time u consumption, �1;0;uð�1;1;uÞ is the number of units of

the risk-free bond (risky asset) held on exit from time u, and Yu is the

aggregate dividend (endowment). The Bellman equation for this problem is

standard. The solution will depend on the conditional expectation of future

consumption choices, and the optimal portfolio and (current) consumption

Equilibrium Asset Return Predictability
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choices will depend on two state variables: the current level of the endowment

and the habit/endowment ratio.

The choice problem for the Habit Agent is more complicated, but it is

standard in the literature on non-separable preferences:

max
fC2;s;�2;0;s;�2;1;sg1

s¼t

Et

Z 1

t

expð��ðs � tÞÞ ðC2;s � �XsÞ1��2 � 1

1� �2
ds

� �
; ð8Þ

subject to a budget constraint of the same form as Eq. (7) and the non-

negativity condition C2;t � �Xt > 0. Again, in equilibrium the stock and

bond price dynamics will depend on the levels of two state variables so the

optimal consumption and investment policy for this investor will be state

dependent.

A competitive equilibrium is a set of asset price processes (generated as

time-invariant functions of the model's state variables):

S 0 Yt;
Xt

Yt

� �
;S 1 Yt ;

Xt

Yt

� �� �1

t¼0

and consumption and portfolio decision rules (again, generated as time-in-

variant functions of the model's state variables):

Ci Yt;
Xt

Yt

� �
; �i;j Yt;

Xt

Yt

� �� �1

t¼0

for i ¼ 1,2 and j ¼ 0,1, such that the following conditions are satis¯ed:

(1) Individual agent optimization: The optimality conditions for the choice

problems (6) and (8) are satis¯ed.

(2) Market Clearing: The goods-market and the asset markets clearing con-

ditions are satis¯ed; i.e.,

C1;t þ C2;t ¼ Yt; ð9Þ
and

�1;0;t þ �2;0;t ¼ 0; ð10Þ
�1;1;t þ �2;1;t ¼ 1; ð11Þ

for all t.

The standard method of implementing a numerical solution to a complete

markets competitive equilibrium is to solve the associated \social planner's

problem", which speci¯es a linear combination (with constant coe±cients) of

the agents' utility functions as the objective function and uses the goods

M. Carlson et al.
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market clearing condition (Eq. (9)) as the budget constraint. The problem, in

this case, is that the habit agent's objective function is not globally concave in

consumption, and there is no general guarantee (for arbitrary parameter

choices) that a solution to the planner's problem exists.

We address this issue in the following way: We choose the parameters of

the utility function and the aggregate endowment process so that the con-

ditions of Assumption 3.2 in Detemple and Zapatero (1991) hold at the

aggregate endowment.7 This implies that a rule that gives constant propor-

tions of the endowment to each investor type is a feasible solution to the

planner's problem with positive state-prices. The algorithm for maximizing

the weighted-average utility then ¯nds a feasible improvement. The numer-

ical techniques used to compute the equilibrium allocations and prices are

discussed in Appendix B. In addition to giving the competitive consumption

allocation as a function of the states, this solution method allows the calcu-

lation of asset price functions and the resulting return dynamics.

In examining the quantitative implications of the model economy, we will

rely on the following result to simplify the analysis:

Proposition. Under Assumptions A1{A4 and assuming that �1 ¼ �2,

dividend yields, optimal consumption shares, and equilibrium conditional

and U expected asset returns vary only with the habit-endowment ratio,

Xt=Yt .

Proof. See Appendix A.

Remark. It is not possible to establish an analogous result for portfolio

shares, although it can be veri¯ed numerically that (under the assumptions of

the proposition) that shares are also functions only of the habit endowment

ratio.

2.3. Choosing the model parameters

There are no closed-form solutions for asset prices, consumption choices,

and portfolio rules as functions of the model's state variables, which means

that the equilibrium allocation must be computed numerically. The pa-

rameter values used to examine the model economy must balance two

con°icting objectives: (1) The endogenous returns should be qualitatively

similar to the actual US data, and (2) the risk aversion coe±cients must be

7As we noted earlier, that the geometric Brownian motion endowment is modi¯ed, if neces-
sary, in order to ensure positive state-prices.

Equilibrium Asset Return Predictability
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consistent with the values used in the literature on measuring the e®ects of

predictability.8

It is important to emphasize that the model economy is not intended as an

explicit description of the full dynamics of US asset markets; i.e., we are not

interested in attempting a formal analysis of the dimensions along which the

model ¯ts (or fails to ¯t) a wide range of asset pricing results. Instead, the

model is intended as an example of an equilibrium framework in which

expected excess returns are predictable and as a \mechanism" for generating

simulated return data for subsequent analysis.

The parameterization of the model examined in the following sections is

shown in Table 1. These values are chosen to match the basic dynamics of

excess returns and dividend yields, at both short and long horizons, observed

in the actual data. The endowment growth and volatility parameter values

are higher than those consistent with aggregate consumption growth but

lower than those implied by aggregate dividend growth rates.9

2.4. Some basic properties of the model economy

The model was simulated 5,000 times, with each simulation consisting of 30

years of monthly observations. The results of these simulations are used to

study the basic properties of the model economy. All of the optimal rules and

endogenous asset returns are shown as functions of the habit/endowment

ratio. In the following ¯gures, the shaded histogram in the background of

8This rules out the parameterizations in Campbell and Cochrane (1999) and Chan and Kogan
(2002). These models/parameterizations match asset returns more closely than the one we will
consider further, but they use levels of risk aversion of 20 and higher.
9At parameter values for the endowment growth rate that are consistent with aggregate US
consumption data, there will be an \equity premium puzzle" and a \risk-free rate puzzle".

Table 1. Model parameters.

Name Symbol Value

Time Discount Rate � expð�0:07Þ
Agent 1's Utility Exponent Parameter �1 8
Agent 2's Utility Exponent Parameter �2 8
Habit Intensity � 0.25
Habit Persistence � 0.05
Social Planner's Weight on T-S Agent 	 0.50
Endowment Growth � 0.0172
Endowment Volatility � 0.06

M. Carlson et al.
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each panel shows the marginal density of the ratio of habit to endowment,

across the simulated paths of the economy.10

The time-separable investor's optimal consumption share of the aggregate

endowment is shown in Fig. 1. The consumption share is a linear, decreasing

function of the ratio of habit to endowment, which seems intuitively rea-

sonable, but this decrease is slight.11 The optimal share °uctuates between

0.47 and 0.43 over the range of the ratio of habit to endowment. By con-

struction, the optimal consumption share of the habit investor is one minus

the share of the time-separable investor.

The optimal risky asset allocations for both agents, as a percentage of each

agent type's wealth, are shown in Fig. 2. The top panel in the ¯gure shows

that the T-S investor is always issuing the risk-free asset to the habit investor

and using the proceeds to invest in the risky asset. For di®erent levels of the

habit/endowment ratio, the T-S (Habit) investor holds between 104% (97%)

and 113% (91%) of her wealth in the risky asset, over most of the support of

the distribution of the habit/endowment ratio. The T-S investor's level of

investment in the risky asset is nearly linear and increasing in the habit/

endowment ratio. The optimal asset holdings of the habit investor must be

10This histogram is based on the 5,000 data points corresponding to the terminal value of the
state variable.
11Linearity of the consumption share follows from Eq. (A.10) in Appendix A.

Fig. 1. The optimal consumption share of the total endowment for the time-separable in-
vestor as a function of the habit/endowment ratio (the true state variable). The shaded
histogram shows the marginal density of the terminal value of the state variable across 5,000
simulations, each of length T ¼ 360 (months).
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the opposite of the holdings of the T-S investor (in order to satisfy market

clearing), and the lower panel of Fig. 2 shows that this is indeed the case.

Figures 3 and 4 show the dividend yield and the consumption/wealth

ratio, respectively, as functions of the habit/endowment ratio. These ¯gures

document two important features of the model economy. At parameter

Fig. 2. The optimal risky asset portfolio allocation rules (as a percentage of each investor
type's wealth) as functions of the habit/endowment ratio (the true state variable). The shaded
histogram shows the marginal density of the terminal value of the state variable across 5,000
simulations, each of length T ¼ 360 (months).

Fig. 3. The dividend yield as a function of the habit/endowment ratio (the true state vari-
able). The shaded histogram shows the marginal density of the terminal value of the state
variable across 5,000 simulations, each of length T ¼ 360 (months).
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values that match the short-run predictability of excess returns found in the

actual US data, there is little variation in true dividend yields and con-

sumption/wealth ratios in the di®erent states of the world. Perhaps more

important, however, is the fact that dividend yields are a nearly linear

function of the true state. While this fact is unobservable to an econometri-

cian working with only returns and dividend yield data, the monotonicity in

Fig. 3 implies that dividend yields are actually easily inverted to generate the

habit/endowment ratio, and therefore they should be a good proxy for the

true state.

The comparative insensitivity of GE rules to the true state of the economy

can be explained in terms of the properties of the (conditional) Sharpe ratio

SRt ¼
Et ½R1

tþ1 � R0
t �

�1t

; ð12Þ

where R1
tþ1 is the return on the risky asset from t to t þ 1, R0

t is the return to

the risk-free asset from t to t þ 1, and �1t is the volatility of the risky asset.

The Sharpe ratio, as a function of the habit/endowment ratio, is shown in

Fig. 5. It is an increasing function, varying between 0.5 and 0.6.

The risk-free rate and the expected excess return on the risky asset, as

functions of the habit/endowment ratio, are shown in Fig. 6. The model is

Fig. 4. The consumption/wealth ratio, for each investor type, as a function of the habit/
endowment ratio (the true state variable). The shaded histogram shows the marginal density
of the terminal value of the state variable across 5,000 simulations, each of length T ¼ 360
(months).
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capableof generatingbotha timevarying risk-free rate anda time-varyingexcess

return, although since this is e®ectively a one-factormodel, these changeswill be

perfectly correlated. Both risk-free and risky rates are increasing in the habit/

endowment ratio, and the magnitudes of the variation in these quantities is

comparable, both variables ranging between 4% and 5% per year.

As in Campbell and Cochrane (1999), the model generates state-depen-

dent volatility in excess returns, and this dependence is shown in Fig. 7. The

Fig. 6. The (real) risk-free rate and the expected excess return on the risky asset as functions
of the habit/endowment ratio (the true state variable). The shaded histogram shows the
marginal density of the terminal value of the state variable across 5,000 simulations, each of
length T ¼ 360 (months).

Fig. 5. The conditional Sharpe ratio as a function of the habit/endowment ratio (the true
state variable). The shaded histogram shows the marginal density of the terminal value of the
state variable across 5,000 simulations, each of length T ¼ 360 (months).
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standard deviation is an increasing function of the habit/endowment ratio,

ranging from 7% per month, for low habit/endowment levels, to 8.5% per

month for high habit/endowment levels. So, excess returns, in the model, are

both higher and more volatile as the habit risk in the economy increases.

Summary statistics for model-generated excess returns and dividend

yields, across 5,000 independent simulations of the model economy are shown

in Table 2. The data simulated from the model have the following qualitative

Fig. 7. The standard deviation of the excess return as a function of the habit/endowment
ratio (the true state variable). The shaded histogram shows the marginal density of the
terminal value of the state variable across 5,000 simulations, each of length T ¼ 360 (months).

Table 2. Summary statistics for simulated excess
returns and dividend yields.

Mean Std. Dev.
Autocorrelation
(One-Month)

Excess Return
Mean 0.0426 0.0737 �0.0030
Median 0.0424 0.0737 �0.0048
25th Percentile 0.0342 0.0717 �0.0386
75th Percentile 0.0508 0.0756 0.0343

Dividend Yield
Mean 0.0713 0.0017 0.9806
Median 0.0711 0.0016 0.9834
25th Percentile 0.0699 0.0013 0.9752
75th Percentile 0.0726 0.0021 0.9894

Notes: Summary statistics for the continuously com-
pounded excess returns and log dividend yields from
5,000 simulated sample paths of the model economy.
Means are annualized by multiplying monthly values by
12 and standard deviations are annualized by multiply-
ing monthly values by

ffiffiffiffiffi
12

p
.
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properties: (i) the stationary distributions for excess returns and dividend

yields are approximately symmetric; (ii) the average risk premium is 4.26%

per year with a standard deviation of 7.37% per year; (iii) the average value

of the dividend yield is 7.13% per year with a standard deviation of 0.17% per

year; and (iv) excess returns are virtually uncorrelated and dividend yields

are highly autocorrelated.

For comparison purposes, Table 3 contains summary statistics on the

continuously-compounded monthly excess returns to the CRSP value-

weighted portfolio and the log dividend yield (for the CRSP value-weighted

portfolio) from 1961 to 1998. The model results for excess returns are broadly

consistent with the data, although the empirical distribution of actual excess

returns is not symmetric. Dividend yields in the model are as persistent as

actual dividend yields, although their average value is more than twice the

level of the actual data. The volatility of model generated excess returns is

slightly less than half of the volatility of actual excess returns. Model gen-

erated dividend yields are about 70% as volatile (on average) as actual div-

idend yields. These facts are important because they imply, if anything, that

our model tends to overstate the predictability of expected excess returns.

The overall conclusion that we draw from a comparison of Tables 2 and 3 is

that the parameterization of the model used to simulate the return and

dividend yield data is adequate for the task at hand.

Table 3. Summary statistics for US excess returns and dividend
yields: 1961:01 to 1998:12.

Excess Returns Dividend Yields

Mean 0.0654 0.0334
Median 0.0964 0.0320
Standard Deviation 0.1520 0.0025
25th Percentile �0.2399 0.0284
75th Percentile 0.4107 0.0389
1st-Order Autocorrelation 0.0647 0.9842

Notes: Excess returns are the continuously compounded monthly
return to the CRSP value-weighted index between t and t þ 1 in
excess of the continuously-compounded one-month Treasury bill
yield at time t, where the one-month yield comes from Ibbotson
Associates. Means are annualized by multiplying monthly values
by 12 and standard deviations are annualized by multiplying
monthly values by

ffiffiffiffiffi
12

p
. Log dividend yields are constructed, as

in Fama and French (1988), from the with- and without-divi-
dend return to the CRSP value-weighted portfolio.
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3. Return Predictability

3.1. Empirical dynamics in the US data

There is an extensive literature that documents the predictability of di®erent

equity portfolios over di®erent time periods and di®erent holding period

horizons. Table 4 contains information from a number of representative

studies describing the results from linear regressions of monthly market

returns on lagged values of annual market dividend yields.

At monthly or quarterly horizons, a few robust facts emerge from the OLS

regressions in Table 4: ðiÞ Higher dividend yields are positively related to

future returns; ðiiÞ About half of the slope coe±cients in the regressions are

not signi¯cantly di®erent from zero;12 ðiiiÞ the R2 statistics in these regres-

sions, while larger at the quarterly than the monthly horizon, never exceed

5.2% in any case; and ðivÞ while the point estimates of the slope coe±cient

vary, the general results are robust to whether or not returns are ex post real

Table 4. A summary of return predictability based on dividend yield regressions.

Authors (Year) Data Characteristics Regression Characteristics

Period Frequency Other Slope Slope-t R2

Fama{French (1988) 1941{1986 M r 0.280 1.830 0.000
Fama{French (1988) 1941{1986 Q r 1.260 2.480 0.020
Campbell et al. (1997) 1952{1994 M r 0.027 3.118 0.018
Campbell et al. (1997) 1952{1994 Q r 0.080 3.152 0.049
Balduzzi{Lynch (1999) 1927{1991 M r, VAR 0.304 n:r: 0.004
Campbell{Viceira (1999) 1947{1995 Q x, VAR 0.069 3.286 0.052
Barberis (2000) 1927{1995 M r 0.258 1.806 0.004

Notes: The dependent variable in the regression is the real return to a value-weighted
market proxy, and the independent variable is annual dividend yield on the market (except
for Campbell et al. (1997), Balduzzi and Lynch (1999), and Campbell and Viceira (1999)
who use the log dividend yield). In the \Data frequency" column, MðQÞ refers to monthly
(quarterly) observations. In the \Data Other" column, \r" means real returns were used,
and \x" means excess returns were used; and \VAR" means that the return versus divi-
dend yield relationship was estimated as part of a larger VAR. \Slope" in the regression
characteristics section refers to the slope coe±cient in the linear regression, while \Slope-t"
is the t-statistic on the slope coe±cient. R2 is the percentage of the variation in returns
explained by the regression model. \n:r:" means that this statistic was not reported.

12In all of the studies cited in Table 4, the t-statistics in the regression are calculated using
standard errors that are robust to heteroskedasticity and serial correlation in the regression
residuals.
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returns or returns in excess of a short rate and whether or not they are from a

single-equation model or a (restricted) bivariate VAR.

There are two well-known problems associated with interpreting the

statistical signi¯cance of the regressions summarized in Table 4. First, div-

idend yields are highly persistent series. For example, Campbell and Viceira

(2000) report that the coe±cient of log dividend yields on lagged log divi-

dend yields in their bivariate VAR is 0.957, and Cochrane (2001) reports a

value of 0.97 for annual log dividend yield autoregressions. Using monthly

post-War data through 1999, the autocorrelation of log dividend yields is

closer to 0.99. This issue is important because near unit root behavior in a

time series regression can have an important impact on the accuracy of

conventional asymptotic approximations in ¯nite-sample; i.e., it is very

di±cult to interpret a t-statistic of 3.152 as actually coming from a Student t

sampling distribution.13

The second problem is that log dividend yields are pre-determined and

not exogenous regressors. Stambaugh (1999) notes that, in the regression of

returns on lagged variables related to end of period asset prices, regression

disturbances are generally correlated with lagged and future values of the

regressor. The resulting OLS parameter estimates, while consistent, are

biased in ¯nite-sample, and the extent of this bias is related to the per-

sistence of the regressor. In an example of the return versus dividend yield

regression calibrated to US data from 1952 to 1996, Stambaugh (1999)

¯nds that the upward bias is nearly as large as the OLS estimate itself

and the sampling distribution deviates substantially from the normal

distribution.

These results suggest that the statistical signi¯cance of the regression of

monthly and quarterly market returns on lagged market dividend yields is

di±cult to interpret. In particular, the point estimates of the parameters may

deviate substantially from the range of values reported in Table 4, and cal-

ibrating a model to precisely reproduce these estimated coe±cients may be

misleading. Nonetheless, as will be demonstrated below, the model delivers

regression results that are broadly consistent with the point estimates

reported in Table 4.

13Goetzmann and Jorion (1993) and Nelson and Kim (1993) are early Monte Carlo studies
demonstrating ¯nite-sample biases in long-horizon return versus dividend yield regressions.
Valkanov (2003) is a comprehensive recent theoretical treatment of near unit root behavior in
long-horizon predictability regressions, including those that use dividend yields to forecast
excess market returns.
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3.2. Empirical dynamics in the model-generated data

Given a time series of model-generated excess returns and dividend yields, we

estimate the simple (restricted) VAR for excess returns and dividend yields

commonly used in the literature:

R1
tþ1 � R0

t ¼ 
þ � logðDt=S
1
t Þ þ "1tþ1;

logðDtþ1=S
1
tþ1Þ ¼ �þ � logðDt=S

1
t Þ þ "2tþ1;

ð13Þ

where R1
tþ1 is the continuously compounded return on the risky asset from t

to t þ 1, R0
t is the continuously compounded return to the risk-free asset from

t to t þ 1, Dt is the sum of the endowment from t � 11 through t, and S 1
t is

the time t price of the risky asset. The parameters in (13) can be estimated

(and are typically estimated) by applying OLS to each equation, individually.

In any sample of simulated data, the OLS estimate of � will su®er from the

¯nite-sample bias examined in Stambaugh (1999), but since this issue has not

been corrected in the empirical literature, we will (initially) follow that

convention here.

Histograms of the point estimate of the slope coe±cient and the R2 sta-

tistic of the excess return regression in Eq. (13), for 5,000 simulated sample

paths of 30 years worth of observations from the model economy, are shown

in Fig. 8. Consistent with the evidence in Table 4, the R2 of the regression is

typically less than 1%. The density of the slope coe±cient in the simulated

returns versus dividend yield regressions is skewed to the right and centered

Fig. 8. The empirical densities of the R2 statistic and the slope coe±cient in the regression for
one-month excess returns on lagged dividend yield, across 5,000 simulations, each of length
T ¼ 360 (months).
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near 1.0, although there is considerable spread in this distribution. These

values are consistent with their empirical counterparts reported in Table 4.

The predictability of long-horizon returns is examined in Fig. 9, which is

the long-horizon (three-year) analog of Fig. 8. The explanatory power of the

long-horizon excess return regressions is substantially higher than those of

the one-month horizon regressions. The distribution of the R2 statistic, across

the 5,000 simulated histories of the model, places approximately 25% of the

probability mass between 0.20 and 0.40. The slope coe±cients are also larger,

with a mean value of approximately 30%. These results are consistent with

the long-horizon regressions results reported in Campbell et al. (1997) and

Cochrane (2001).

3.3. Serial correlation and normality of the model

generated residuals

In constructing empirical estimates of optimal policies, it is important to

verify whether or not the measured residuals to the simulated data are

consistent with being independent draws from a normal distribution. If these

conditions are consistent with the simulated data, then the bias-correction

suggested in Stambaugh (1999) is feasible and appropriate. In order to ad-

dress this question, we ¯rst apply a standard serial correlation test to the

each of the T ¼ 360 samples of model residuals. The results are reported in

Table 5.

The Box{Pierce test statistic, which is constructed as a weighted-

average of a speci¯ed number of the squared residual sample autocorrelation

Fig. 9. The empirical densities of the R2 statistic and the slope coe±cient in the regression for
3-year excess returns on lagged dividend yield, across 5,000 simulations, each of length T ¼
360 (months).
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coe±cients has an asymptotic chi-square distribution, with degrees of free-

dom equal to the number of squared autocorrelations used in constructing

the statistic. We compute the value of this statistic (using twelve lags of

each residual series) for each of the 5,000 sample paths. The critical values

based on this large sample is then compared to the critical values of the

asymptotic distribution, under the null of no serial correlation. The results in

Panel A of Table 5 suggest that the residual series are very close to being

uncorrelated. The actual rejection rates of the test statistics correspond very

closely to what we would expect by random chance under the asymptotic

distribution.

Given that the residuals are uncorrelated, we can also test for normality.

The Jarque{Bera test uses the sample skewness and kurtosis to test the null

hypothesis that the data is drawn from a normal distribution. The results in

Panel B con¯rm that normality of the VAR residuals is not inconsistent with

the simulated data. In summary, a hypothetical econometrician faced with

the simulated data would reasonably conclude that the data conform quite

nicely to the standard assumption of a restricted ¯rst-order VAR driven by

normally distributed innovations. A simple empirical (SE) bias-correction

seems quite reasonable, under these conditions.

Table 5. Serial correlation and normality tests for VAR residuals.

Nominal Rejection Rate (%)

5 10 25 50 75 90 95

Panel A: Rejection Rates for the Box{Pierce Test (w/12 Lags)
Simulated Residuals
Excess Returns 4.32 9.48 23.64 48.84 74.20 89.76 95.44
Dividend Yield 6.24 12.16 27.52 53.56 77.08 92.00 96.00

Panel B: Rejection Rates for the Jarque{Bera Test
Simulated Residuals
Excess Returns 4.84 10.12 26.72 54.80 79.88 92.00 95.80
Dividend Yield 8.60 12.72 27.00 51.28 76.98 90.20 94.88

Notes: The Box{Pierce statistic is constructed using a weighted sum of 12
lagged, squared autocorrelations. Under the null hypothesis of no serial cor-
relation, it has an asymptotic �2

12-distribution. The empirical rejection rates for
5,000 simulated time series of length T ¼ 360 are compared to the rejection
rates under the asymptotic distribution. The Jarque{Bera test evaluates the
null hypothesis that a set of observations comes from a normal distribution
with unknown mean and variance against the alternative that the sample
does not come from a normal distribution using the sample skewness and
kurtosis.
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4. Comparing Optimal Policies

Since the empirical literature, by and large, focuses on a time-separable,

constant relative risk aversion investor, we will as well. Table 6 lists a number

of possible sources of di®erences between GE rules, and the empirical rules.

Perhaps the most important issue to examine is that the true relationship

between the risk premium and the state variable is known in the model, but

the empirical model speci¯es a linear relationship between return and divi-

dend yield and the slope coe±cient is biased in ¯nite sample.

In this and the following section, we will examine the relative importance

of these speci¯cation issues for consumption policies and portfolio rules, as

well as for the interpretation of utility cost calculations. Appendix C

describes the general form of the partial equilibrium consumption/portfolio

problem and the numerical methods that we use to solve it. We will consider

the following consumption/portfolio rules:

. SE: The optimal policies for a CRRA agent using the linear, empirical

dynamics, based on the simulated data from GE model, without any at-

tempt at a bias-correction for the slope coe±cient. This corresponds to the

standard practice in the literature on the quantitative signi¯cance of

portfolio choice under return predictability.

. GE: The optimal consumption and portfolio choices from GEmodel. Given

that 
� ¼ f ðX=Y Þ and ðX=Y Þ ¼ hðD=S 1Þ and that f and h are monotonic

functions, we can write the optimal portfolio rule as the composite function


� ¼ f � hðD=S 1Þ.
The di®erence between SE and GE, across values of the dividend yield, is

the quantity of interest; i.e., how misleading a picture of GE rule do we see

in the empirical estimates?

Table 6. Di®erences between the true and empirical models.

True Model (Standard) Empirical Model

1. ðR1
tþ1 � R0

t Þ versus ðDt=S
1
t Þ is known �̂ from ðR1

tþ1 � R0
t Þ ¼ 
þ �ðDt=S

1
t Þ þ "tþ1 is

biased
2. vartðR1

tþ1 � R0
t Þ ¼ f ðDt=S

1
t Þ Constant Volatility

3. ðDt=S
1
t Þ is highly persistent �̂ from ðDtþ1=S

1
tþ1Þ ¼ � þ �ðDt=S

1
t Þ þ tþ1 is

biased downward
4. 1-horizon Finite horizon
5. R0 is stochastic. R0 is constant
6. Continuous time Discrete time

Notes: ðR1
tþ1 � R0

t Þ is the excess return on the risky asset at date t þ 1. ðDt=S
1
t Þ is the

dividend yield at time t. R0 is the return to the risk-free asset.
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. Empirical Bias-Corrected (EBC): This rule is computed by solving the

CRRA investor's portfolio problem using the slope coe±cient adjusted

by the normality based correction in Stambaugh (1999). This bias cor-

rection uses information about the slope coe±cient in the dividend yield

autoregression and the covariance matrix of the residuals in the VAR

in (13).14

. Model Bias-Corrected Empirical (MBC): This rule is computed by

solving the CRRA investor's portfolio problem using the true functional

form for the dependence of the conditional mean of excess returns on div-

idend yields. Although this rule could not be known in practice, it provides

important information about the proportion of the di®erence between SE

and GE that can be attributed to the bias problem. It also provides im-

portant information on the accuracy of the simulations.

. U Policy: This is the rule that would emerge from a Merton–Samuelson

style analysis based on unconditional moments.

4.1. Single path analysis

The optimal policies, under the various speci¯cations de¯ned in the previous

subsection, are shown in Fig. 10. The policies, SE, EBC, MBC, and U, are

constructed, as described above, using the dividend yield as the conditioning

variable. The dividend yield is assumed to follow a ¯rst-order autoregressive

process with Gaussian innovations, and the innovations to the excess return

are also assumed to be Gaussian with constant variance. This is typically

done in the literature, and as the last section indicated, it is a reasonable

approximation to the model generated data.

14The precise form of the correction follows from the following approximation to the OLS, �̂ ,
bias:

E½�̂ � �� ¼ � �uv
�2
v

;

where �uv is the contemporaneous correlation between the disturbance to the predictive re-
gression and the dividend yield autoregression, �2

v is the variance of the disturbance to the
dividend yield autoregression, T is the sample size, and � is the slope coe±cient in the dividend
yield autoregression (see Stambaugh, 1999, Sec. 2). Evaluating the bias requires specifying
values for �uv;�

2
v ; and �. While the ¯rst two parameters can be approximated by OLS, this is

clearly problematic in estimating �, given the known downward bias in �̂ in an autoregression
with a root near one. Instead, we solve for the implied � using

E½�̂ � �� ¼ � 1þ 3�

T
:

In any case, Stambaugh (1999) argues that this e®ect is small.
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The results in Fig. 10 are for a sample path that has the median slope

coe±cient, from the distribution of the 5,000 sample paths, in the linear

regression of excess returns on dividend yields. In particular, the T-S investor

is assumed to observe 30 years of monthly observations of excess returns and

dividend yields, which are used to estimate the parameters required to im-

plement the speci¯c consumption/portfolio rule. The policy and its implied

utility are then calculated, using a 50-year horizon, which is chosen to reduce

the discrepancy between the empirical and GE policies that can be attributed

to the in¯nite-horizon in the model economy.15 For the SE, EBC, MBC and U

investment and consumption policies, only the choices in the initial period are

shown. The GE policy is time-invariant and is also plotted here, for com-

parison purposes, as a function of the dividend yield.

15We have also examined other paths at both 10- and 20-year horizons and results are
qualitatively similar. These results are available upon request.

Fig. 10. Optimal consumption/wealth ratios and risky asset portfolio allocations, as func-
tions of the dividend yield. The rules are computed for a sample path with the median slope
coe±cient in the simple regression of excess returns on dividend yields. The planning horizon is
50 years. SE is the simple empirical rule, GE is the general equilibrium rule, U is the uncon-
ditional (Merton{Samuelson) rule, EBC is the empirical bias-corrected rule, and MBC is the
bias-corrected rule using the true form of the conditional expected excess return, as a function
of the dividend yield.
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There are dramatic di®erences between the empirical and GE policies, for

both consumption and portfolio choice. The top panel of Fig. 10 describes the

consumption/wealth ratio as a function of dividend yield. The optimal policy

SE is very di®erent from GE rule. An agent with this perception of return

behavior consumes at a much higher rate across all states. This follows be-

cause of the wealth e®ect due to increased expected return and the fact that

the risky asset is a normal good. In addition to a higher level, the implied

variability in consumption under SE is also much higher across the di®erent

dividend yield states.

The bottom panel of Fig. 10 shows that the SE portfolio rules are sub-

stantially more state dependent than GE policies. For example, implement-

ing the SE policy would imply a wealth share devoted to the risky asset that

°uctuates from approximately �10% for a dividend yield realization in the

extreme left tail of the cross-sectional distribution of dividend yields to ap-

proximately 350% in the extreme right tail. The variability of the SE rule

across the interquartile range of dividend yields reported in Table 2 is also

quite large, ranging from 10% to more than 100%. The results in Fig. 10 are

similar to the empirical policies corresponding to the calibration of predict-

ability in Balduzzi and Lynch (1999) and Campbell and Viceira (1999).

To see the e®ect of this bias on consumption and portfolio choices, we

examine conditional policies, EBC and MBC. The top panel of Fig. 10 shows

that, when compared to the SE consumption policy, the consumption rules

EBC and MBC are both lower in level and less variable. In the bottom panel

of Fig. 10, by explicitly correcting the biases in SE calibration, we ¯nd that

the portfolio choices in EBC and MBC become much less variable. All of

these portfolio rules suggest risky asset holdings near 100% of the investor's

allocation. The MBC portfolio rule is close to the true optimal (along this one

path), suggesting that the numerical approximations to GE and partial

equilibrium policies are consistent, and that the associated approximation

errors are not too large. The EBC rule ��� which in contrast to the MBC rule

actually can be implemented ��� is virtually indistinguishable from the MBC

rule, on this path.

In conclusion, we emphasize that all of these policies, excluding GE, are

obtained using the statistics computed along one realized sample path: the

one that has the median slope in the return predictability regression. The

alternative rules can be computed and examined along a collection of reali-

zations of the model economy. This exercise provides important information

about the variability of the estimated rules, and their associated utility costs,

about the true optimal rules.
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4.2. Multiple path analysis

Are the results in Fig. 10 representative of a typical outcome from a simulated

history of the model economy in Sec. 2? In order to answer this question, we

simulate 500 independent histories and compute the SE, EBC, and MBC

rules along each path.16 Figures 11 and 12 summarize the information gen-

erated by this experiment.

The top row of the graphs in Fig. 11 shows the distribution, at the median

of the cross-sectional sampling distribution for dividend yields, of the pro-

portion of wealth invested in the risky asset under the SE, EBC, and MBC

alternatives for measuring excess return predictability. Given the results in

Figs. 2 and 6, the true optimal portfolio allocation should be approximately

105% of the T-S agent's wealth. The actual distribution of proportions, under

the SE rule, ranges from �200% to in excess of 600%. The bulk of the dis-

tribution of proportions is between 0% and 400%, with most of the mass of

the estimates well above 105%. The overall impression, from the top left

16Our analysis was limited to 500 paths due to computational intensity.

Fig. 11. Distribution of SE, EBC, and MBC optimal risky asset portfolio shares and con-
sumption/wealth ratios evaluated at the median of the sampling distribution for dividend
yields across 500 simulated sample paths, using a planning horizon of 50 years. The vertical
dashed-line in the ¯rst two columns of graphs shows the mean of the MBC density.
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histogram in Fig. 11, is that the SE rule generates a wide dispersion in the

estimates of the optimal rule, at the median of the dividend yield distribution.

The EBC rule, constructed using the bias-correction based on the normal

distribution, as in Stambaugh (1999), and shown in the middle column of

Fig. 11, reduces the dispersion of the estimated rule (at the median dividend

yield). This reduction in cross-sectional variance occurs because, along each

path, the bias-correction also depends on the parameters of the residual co-

variance matrix. It also centers the distribution of estimated portfolio shares

closer to 1. However, it still shows substantial variation in the computed

rules, with the bulk of the distribution falling between 0% and 300%.17

The MBC rule, which is not feasible in practice, is clearly the most precise

of the three rules. The results for this rule are shown in the top right panel of

Fig. 11. The histogram of estimated portfolio proportions has its center very

Fig. 12. Distribution of the slope of the optimal portfolio rule for SE, EBC, and MBC
estimates for 500 sample paths, with a planning horizon of 50 years.

17In an experiment not reported here, when the data generating process is a linear VAR, the
OLS slopes across simulated paths are positively biased. In this case, the empirical bias cor-
rection, does reduce the bias in the slopes, but the variance of the distribution of the corrected
slopes remains largely unchanged. This suggests that the conditional volatility documented in
Fig. 7 has an important e®ect on the empirical rules generated from the simulated data.
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close to the true optimal value.18 More important, however, is that the es-

timated values are very precise, in the sense that the sampling distribution

has a very small variance (when compared to either of the empirical rules).

This result says two things: ðiÞ getting the conditional expectation \right" is

very important, and ðiiÞ the simulation procedure is su±ciently accurate that

it is meaningful to interpret the results of the simulations.

The bottom row of histograms in Fig. 11 shows the estimates, at the

median dividend yield value, of the computed optimal consumption/wealth

ratio, according to the SE, EBC, and MBC rules. It demonstrates that the

relative features for the optimal portfolio proportion (in the top row of the

¯gure) are also found in the optimal consumption rule. In particular, the SE

rule generates the most dispersed and biased measures of the optimal con-

sumption/wealth ratio, the EBC is an improved but still °awed estimate, and

the MBC rule (while not empirically feasible) is quite accurate and precise.

Figure 11 only measures the estimated portfolio rule at a single point in the

stationary distribution of dividend yields. In order to ensure that these results

are representative of the entire estimated rule, we present the distribution of

the slope parameters of the optimal portfolio share rule (as a function of

dividend yields), across the 500 sample paths, in Fig. 12. Since these optimal

rules are very nearly linear, the distribution of the slopes provides an accurate

measure of the variability of the rules across the di®erent paths.

The results in Fig. 12 are consistent with those in Fig. 11.19 The distri-

bution of the slope parameters from the SE rule are both very dispersed and

biased upward, given that the true slope is close to zero. The EBC rule, as in

Fig. 11, is an improvement over SE, but it is still quite variable, with a large

proportion of estimated paths containing slopes in excess of 100. The MBC

rule is, again, both accurate and precise, across alternative histories of the

model.

In summary, Figs. 11 and 12 con¯rm that the SE rule is generally quite

inaccurate, and they show that the SE rule is very widely dispersed for

di®erent realized histories from the model economy. This suggests, quite

strongly, that rules based on uncorrected OLS estimates of excess return

predictability are generally not reliable estimates of the true optimal rules.

The multiple path results also show that the EBC rule is an improvement on

the SE rule, but not as strong an improvement as suggested by Fig. 10. In the

18The mean of the MBC distribution is 115%.
19Negatively sloped optimal portfolio rules correspond to the few (permissible but patholog-
ical) cases in which the point estimate of the slope coe±cient in the dividend yield auto-
regression is greater than one.
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single path analyzed in Fig. 10, the EBC rule appears to be essentially as

good an approximation to the true rule as the MBC rule, which uses accurate

information about the DGP that is unavailable to the empiricist. The mul-

tiple path results show that ��� while this outcome is possible ��� it is not

representative of the vast majority of simulated histories of the model

economy.

One point that is not clear from Fig. 10 (or Figs. 11 or 12 for that matter)

is how we should judge the distance between the alternative rules. In Fig. 10,

is EBC actually \close" to GE, or would the T-S agent perceive them as very

di®erent? The natural metric for examining the distance between paths is to

consider the utility costs of switching between alternative investment rules,

and this is what we turn to next.

5. The Utility Costs of Alternative Strategies

One intuitive��� and commonlyused���measure of the utility cost of switching

between alternative rules asks the following question: Howmuchwealth would

an agent be willing to give up in order to incorporate information about

predictability into his or her choices? In this section, we examine the utility

costs of pursuing a variety of policies in three alternative settings.

We ¯rst calculate utility costs from the point of view of the empiricist who

uses a simple OLS estimate of the predictability of excess returns. Next, we

consider the utility cost calculations of an empiricist who knows about the

¯nite-sample bias in the OLS estimates and corrects predictability measures

using the normality based correction in Stambaugh (1999); i.e., an investor

using the EBC rule. Finally, we calculate utility costs using the equilibrium

relationships among the state variables and relevant portfolio choice variables.

The utility cost of a policy �� in setting S is de¯ned as the portion of

wealth an agent would have to forgo in order to be indi®erent between the

policy �� and the strategy �S , which is optimal in the speci¯ed setting.20 The

utility cost is W in

USð$1; �� jZtÞ ¼ USð$1�W ; �S jZtÞ; ð14Þ
where US is the expected utility evaluated under the speci¯cation S , and Zt is

the state variable. For example, if S is the SE setting, Zt is the realized level of

20Balduzzi and Lynch (1999) and Campbell and Viceira (1999) use a similar de¯nition, but
they only calculate U measure, unlike the conditional measure we examine here. Brennan et al.
(1997) and Xia (2001) adopt a di®erent measure that calculates the equivalent terminal
wealth. Kandel and Stambaugh (1996) use a measure of certainty equivalent return.
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dividend yields, and �� is the U policy, then W is the maximum fraction of

wealth (at Zt) that an investor would be willing to pay to have the oppor-

tunity to shift from the U policy to the SE policy (CEW value).

5.1. Single path analysis

The top panel of Fig. 13 shows the utility cost, along the path with median

predictability under SE speci¯cation, of the alternative strategies U and

GE.21 The costs for both policies start close to 20%, at low dividend yield

Fig. 13. The utility costs of di®erent consumption/portfolio policies. The top panel shows
CEW value (per $1 of wealth), under SE dynamics, of allowing the investor to switch away
from either GE or U policy to SE policy. The middle panel shows CEW value (per $1 of
wealth), under the bias-corrected empirical dynamics, of allowing the investor to switch away
from either GE or U policy to the EBC policy. The bottom panel shows the CEW value (per $1
of wealth), under the true return dynamics, of allowing the investor to switch away from the
SE, U, EBC, or MBC policy to the GE policy (the true optimal policy). The rules are computed
for a single sample path with the median slope coe±cient in the simple regression of excess
returns on dividend yields and a planning horizon of 50 years.

21The utility costs of EBC and MBC are not feasible to calculate in the SE setting because
these strategies are time varying and they have to be tracked along with the changes in state
variables when calculating expected utility. This is not the case in the equilibrium setting
because these strategies may be taken as time invariant in the steady state.
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levels, and increase to near 40% of the GE policy and near 50% for the U

policy, at high dividend yield levels. Again, following Eq. (14), this means

that for low dividend yield levels, $1 invested in the GE (U) policy provides

the same level of utility as $0.80 invested in SE. This range is consistent with

its U expectation reported in the literature (Balduzzi and Lynch, 1999;

Campbell and Viceira, 1999). On average, an investor who believes that a

simple OLS point estimate is an adequate description of excess return

predictability would be indi®erent between the true optimal policy and

current wealth and the SE policy and a 30% reduction in wealth.

The middle panel of Fig. 13 repeats the utility cost calculation assuming

that the empiricist corrects the OLS estimates for the ¯nite-sample bias in the

excess return versus dividend yield regressions described in Stambaugh

(1999). In two regards, the results are similar to the top panel in Fig. 13. The

EBC rule is still more attractive than either the U or GE rule, and the GE and

U rules are about equally unattractive to a bias-corrected empiricist. The

primary di®erence between the top and the middle panels of the ¯gure is that,

consistent with the results in Fig. 10, the overall utility cost of switching is

much lower in this case. In particular, the utility value of $1 invested in EBC

(when that rule is thought to be optimal) is equivalent to $0.95 invested in

either GE or U. This shows that ��� for this one sample path��� EBC and GE

(and U) are \close" in a utility cost sense. It remains to be seen whether or not

this result holds up across multiple paths.

The utility costs of SE, EBC, and U policies ��� viewed from the per-

spective of the true DGP ��� are shown in the bottom panel of Fig. 13.22 First,

for this one path, the utility costs of the SE policy plot o® the chart, essen-

tially incurring a utility cost of 100%. The level of exposure to habit risk

implied by the SE policy in Fig. 10 is so extreme as to imply that $1 invested

in SE is virtually worthless to the true GE investor. This policy implies

such extreme consumption and consumption volatility, that expected wealth

tends to zero, when viewed from the perspective of the true conditional

moments.

The EBC policy can be implemented in practice, and it yields utility costs

ranging from $0.11 on the dollar (of wealth) to $0.30 on the dollar. This is

clearly a substantial improvement on the SE policy. However, these

22The true optimal policy is time invariant. In order to determine the utility costs of the
suboptimal SE, EBC, MBC and U policies, the initial choice functions were taken as
approximations to an in¯nite horizon solution. Given the 50-year planning horizon of the agent
performing the partial equilibrium analysis, there should be very little error in this approxi-
mation.
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calculations show that the EBC policy still results in a substantial utility cost;

i.e., there are signi¯cant di®erences between the VAR assumptions and the

true DGP. In particular, the EBC policy does not do nearly as well as another

feasible strategy: the Merton{Samuelson (U) policy. The utility costs of U

policy are on the order of $0.07 to $0.10 on the dollar, indicating that $1

invested in U policy yields the same level of utility as $0.90 to $0.93 invested

in the true optimal policy.23 In fact, the lowest panel in Fig. 13 shows that the

utility costs of U policy are essentially indistinguishable from the utility costs

of the (infeasible) MBC policy.

5.2. Multiple path analysis

The cross-sectional distributions of the utility costs of di®erent rules across

the same 500 sample paths used to construct Figs. 11 and 12 are presented in

Figs. 14 and 15. The left column of histograms in Fig. 14 compares U and GE

policies to SE policy, assuming that the dynamics estimated with simple OLS

are an accurate description of the conditional mean excess market return.

These densities correspond to the top panel of Fig. 13. The left column of

Fig. 14 shows that utility cost estimates, from the perspective of simple OLS

dynamics, have a very large cross-sectional variance. The utility costs of the

U and GE policies are comparable, and they range from $0.00 to $0.60 on the

dollar, across the 500 paths. This implies that the results in Fig. 13 are

consistent with the overall experience obtained from repeated simulations of

the model.

The right column of histograms in Fig. 14 compares U and GE to the

bias-corrected empirical policies, under the assumption that the bias-

corrected OLS is the correct description of predictability. These plots

correspond to the middle panel of Fig. 13, and they show that the empirical

bias-correction does change the distribution of the utility costs for U and

GE. The utility costs of switching from U or GE to EBC are generally

comparable and lower than those in the SE setting, and this is consistent

with Fig. 13. The right column of Fig. 14 does suggest that, while the

utility cost estimates of switching to U or GE on the median predictability

path are close to the mode of the cross-sectional distribution, there are still

a large number of paths where the utility costs of U and GE are in excess of

$0.20 on the dollar.

23This is reminiscent of sage advice that is beautifully conveyed in Chinese folklore: \Stand
still in a constantly changing uncertain world."
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Figure 15 shows the cross-sectional distribution of the utility costs of SE,

EBC, MBC, and U under the true equilibrium dynamics.24 These histograms

are consistent with the single-path results in Fig. 13. In particular, the SE rule

is almost always considered an unacceptably risky strategy to the T-S in-

vestor. The utility costs are close to $1 (on the dollar) in more than 80% of the

Fig. 14. Utility costs under the empirical dynamics. The left two histograms show the
empirical density, measured across 500 independent sample paths, of the utility cost di®er-
ences between the SE rule and the GE rule and between the SE rule and the U rule, evaluated
at the median point in the stationary distribution of the dividend yield. The right two his-
tograms are the analogous plots comparing GE and U rules to the EBC rule, respectively. All
of the rules are computed assuming a planning horizon of 50 years.

24These distributions contain all the information required to calculate the (frequentist) \risk
function" of each policy which is a standard tool for evaluating data-dependent decision rules.
See Berger (1985) for a detailed and general treatment of statistical decision theory. Jorion
(1986) examines risk functions in a static Markowitz setting, where the investment policies are
dependent on the unobservable means of portfolio returns. In a qualitative sense, his ¯ndings
are very similar to those in this section.
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500 paths.25 The rank ordering of the rules in the bottom panel of Fig. 13 is

also generally preserved in the histograms of Fig. 15.

The EBC rule is an improvement on the SE rule, but it still has a modal

utility cost (with roughly 40% of the simulations) of $1.26 There is a sub-

stantial percentage of the simulated paths for which the VAR dynamics

25In settings such as ours, it is not uncommon for a large set of policies to result in utility that
is essentially �1. Kandel and Stambaugh (1996) restrict attention to asset allocations where
wealth invested in the risky asset is between 0% and 99% for precisely this reason (see their
Footnote 29). In our setting, investment policies give rise to unbounded negative utility for a
variety of reasons. For example, if the consumption rate is too high, wealth will be driven to
zero at a rate su±cient to make discounted utility �1.
26This is consistent with the number of paths that have negative slopes in the portfolio
allocation (see Fig. 12).

Fig. 15. Utility costs under the true dynamics. The upper-left histogram shows the empirical
density, measured across 500 independent sample paths, of the utility cost di®erences between
the true GE rule and the SE rule, evaluated at the median point in the stationary distribution
of the dividend yield. Similarly, other histograms show the analogous results for the empirical
densities of the utility costs di®erences between the true GE rule versus the EBC, MBC and U
rules, respectively. All rules are calculated assuming a planning horizon of 50 years.
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underlying EBC are qualitatively di®erent from the true DGP. Again, these

di®erences re°ect the variety of di®erences between the true DGP and the

assumptions underlying a VAR with normal errors. The MBC rule is the most

attractive to the T-S investor (i.e., has the lowest utility cost in most simu-

lations), with cost levels near 0 in almost 80% of the simulations. U policy

also fares very well, although it is slightly more costly than the (infeasible)

MBC rule.

Overall, the conclusions that can be drawn from Figs. 14 and 15 are

consistent with Fig. 13: Using the SE dynamics gives an extremely distorted

and noisy view of the risks and bene¯ts of alternative strategies. Bias cor-

rection is useful, but it still fails to improve on U rule or reveal the attrac-

tiveness of the true optimal (GE) rule.

6. Conclusions

We have examined the properties of estimates of the quantitative signi¯cance

of asset return predictability using the excess returns and dividend yields

generated from an equilibrium model. When the model is calibrated to deliver

conditional moments of excess returns and dividend yields that are consistent

with the US data, we ¯nd that: ðiÞ It is important to bias-correct the simple

OLS estimates. This avoids grossly overestimating the e®ect of predictability

on consumption and portfolio rules. ðiiÞ Empirically feasible bias-correction

does not solve the problem that conditional moments are di±cult to measure.

This means that there is a large cross-sectional variance in the estimates of

conditional consumption and portfolio rules. ðiiiÞ A bias-correction strategy

based on the standard VAR assumptions for the DGP for returns ��� which

appears to be a reasonable approximation in the simulated returns ��� still

can generate large utility costs for a signi¯cant proportion of the simulated

model histories. In fact, under the true dynamics, U policy actually has sig-

ni¯cantly lower utility costs than either of the empirically feasible conditional

policies.

By using a fully speci¯ed equilibrium model, we can construct MBC

strategies that come very close (under the true dynamics) to recovering GE

policies. This ¯nal step in our investigation is only possible because our model

economy fully speci¯es the Arrow{Debreu prices, and consequently, the joint

dynamics of dividend yields and asset returns. It is a fundamental advantage

of a GE model over a reduced form DGP, such as a VAR. While some of

the problems with empirically estimated decision rules may be addressed

with exogenously speci¯ed returns, the severity of these biases ��� and their
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connection to the explicit source of return predictability ��� cannot be un-

derstood in the absence of a fully speci¯ed model.

The conclusions from this study apply most directly to calibration studies.

Their implications for Bayesian analyses of return predictability are less

clear, and a thorough answer to this question is beyond the scope of this

paper. An examination of this kind would require a thorough treatment of the

choice of prior distribution. The results in this paper ��� particularly the

comparatively little information about the conditional mean contained in

realistic samples ��� suggest that the choice of the prior distribution has non-

trivial implications for the properties of the Bayesian estimates of optimal

rules. Simple priors, motivated by issues of tractability of the likelihood

function, may prove to be inadequate in capturing the true nature of un-

certainty about return predictability.

More fundamentally, however, a truly Bayesian perspective would have

profound implications for the underlying model structure, since we would

want to match the agent's problem in the partial equilibrium analysis with

the problem solved in GE. For example, the in¯nite-horizon, constant pa-

rameter, Markov structure of the model that we use here suggests that model

uncertainty should disappear after a ¯nite amount of time. Therefore, a more

complicated data-generating structure would need to be constructed to en-

sure uncertainty in the steady-state of the model. In addition, the underlying

concept of the model equilibrium must be extended to state explicitly the

nature and evolution of the beliefs of each agent type. This is a challenging

problem, and it is expected to introduce additional components driving the

dynamics of model-generated returns. This analysis remains as an important

direction for future.

Appendix A. Proof of Proposition

The social planner's problem, starting at time t, is

max
C1;s;C2;s

Et

Z 1

t

exp ��ðs � tÞ 	
C 1��1

1;s � 1

1� �1
þ ð1� 	Þ ðC2;s � �XsÞ1��2

1� �2

 ! !
ds

" #
;

ðA:1Þ
where 	 is a constant in ð0; 1Þ, subject to the resource constraint

C1;s þ C2;s ¼ Ys; ðA:2Þ
for all s > t. Since there are no opportunities in this economy for inter-

temporal resource transfer, the dynamic problem in (A.1) is equivalent
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to solving

max
C1;t ;C2;t

	
C 1��1

1;t � 1

1� �1
þ ð1� 	Þ ðC2;t � �XtÞ1��2 � 1

1� �2

( )
; ðA:3Þ

at all dates t, subject to the constraint (A.2).

Let the Lagrange multiplier for the resource constraint (A.2) be denoted


t , then the ¯rst order conditions to the problem in (A.3) are

	C ��1
1;t ¼ 
t ðA:4Þ

and

ð1� 	ÞðC2;t � �XtÞ��2 ¼ 
t ; ðA:5Þ
along with (A.2). So,

C1;t ¼

t

	

� 	�1=�1 ðA:6Þ

and

C2;t ¼

t

1� 	

� 	�1=�2 þ �Xt ; ðA:7Þ

and, together with (A.2), we have


t

	

� 	�1=�1 þ 
t

1� 	

� 	�1=�2 þ �Xt ¼ Yt :

If �1 ¼ �2 ¼ �, then


t ¼ 	 1þ 	

1� 	

� �� 1
�

" #
�

ðYt � �XtÞ��: ðA:8Þ

Plugging (A.8) into (A.6) and (A.7) implies that the consumption shares of

the two agent types can be written as

C1;t

Yt

¼ 1þ 	

1� 	

� �� 1
�

" #�1

!t ðA:9Þ

and

C2;t

Yt

¼ 	

1� 	

� �� 1
�

1þ 	

1� 	

� �� 1
�

" #�1

!t þ ½1� !ðtÞ�; ðA:10Þ

where

!t � 1� �
Xt

Yt

;
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for notational convenience. Taken together, (A.9) and (A.10) demonstrate

the statement in the proposition regarding consumption shares.

Now, the price of the risky asset ��� which is a claim to the aggregate

endowment ��� can be calculated using the marginal rate of inter-temporal

substitution of either agent, at the equilibrium consumption levels. For

convenience, we will use the T-S Agent's utility function:

S 1
t ¼ Et

Z 1

t

expð��ðs � tÞÞ C1;s

C1;t

� ���

Ysds

� �
; ðA:11Þ

which can be rewritten, using (A.9), as

S 1
t ¼ ½!tYt��Et

Z 1

t

expð��ðs � tÞÞ!��
s Y 1��

s ds

� �
:

By Assumption A4, Yt provides no information about the future evolution of

Ys (or f ðYsÞ, and S 1
t is a function of only !s for s > t. The only e®ect of the

current endowment, Yt is to scale the current price, S 1
t , up or down. This

implies that the expected return to the risky asset over the interval from t to

t þ � , de¯ned as

1

S 1
t

Et S 1
tþ� þ

Z tþ�

t

Yudu

� �
;

is independent of Yt. As noted earlier, closed-form solutions for the asset

prices and expected returns do not exist.

The price of a risk-free asset maturing at s > t can be constructed in a

manner that is analogous to Eq. (A.11):

S 0
s�t;t ¼ Et expð��ðs � tÞÞ C1;s

C1;t

� ���

ds

� �
;

which reduces to

S 0
s�t;t ¼ ½!tYt��Et½expð��ðs � tÞÞ!��

s Y ��
s ds�;

and the dependence of the risk-free term structure on the endowment is,

again, only a scaling e®ect.

The results in this proposition, for this economy, are fundamentally the

same as those derived by Chan and Kogan (2002) in a \keeping up with the

Joneses" habit model with a geometric Brownian motion endowment. See, in

particular, their Lemmas 1 and 2.
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Appendix B. Solving the Model and Simulating Asset Returns

A solution to the model economy described in Sec. 2 consists of asset prices,

fS 0;S 1g and portfolio rules f�i;0; �i;1g for i ¼ 1,2, that are time-invariant

functions of the state variables (the aggregate endowment (dividend) and the

level of the habit index) and that implement an equilibrium in the model.

Since explicit, closed-form solutions for these functions do not exist, we ap-

proximate them numerically.

At the parameter values that we have chosen, the second welfare theorem

applies, and we make use of a Social Welfare Function to characterize the

equilibrium consumption allocation.27 Given a utility weight, 	, the social

planner's problem is de¯ned as:

V Yt;
Xt

Yt

� �
¼ max

fC1;tC2;tg1
t¼1

	U1ðC1;tÞ þ ð1� 	ÞU2ðC2;t ;XtÞ
�

þ �E V Ytþ1;
Xtþ1

Ytþ1

� �� ��
; ðB:1Þ

subject to the aggregate budget constraint (goods market clearing),

C1;t þ C2t ¼ Yt;

for all t.

The dynamic programming problem (B.1) is solved using the methods

described in Kushner and Dupuis (1992, Sec. 5.3).28 Their approach is to

discretize the underlying state space using a lattice and then form a Markov

chain on the discretized states that approximates the continuous dynamics.

In our setting, the state space is the set of endowment and habit/endowment

pairs, ðY ;X=Y Þ 2 R2, and the discretized state space is a 150� 150 lattice

formed on the logarithmic transformation of these pairs.29 Transition prob-

abilities at points within the discretized state space are to neighbors only and

this feature of the numerical approximation is the key to reducing the

computational burden.

Once the approximating Markov chain is formed, standard numerical

dynamic programming procedures can be applied. One particularly e±cient

27Recall the discussion in Sec. 2.2.
28See Hindy et al. (1997a,b) for another application of these solution methods.
29The state variable for the endowment process, Y , is unbounded and in the discretized state
space this state variable is truncated at a high, but ¯nite, level. Kushner and Dupuis (1992)
give conditions under which the solution of a dynamic programming problem on the bounded
approximating Markov chain converges to the solution on the unbounded continuous state
space. We use these convergence results to guide our choice of the upper bound for Y in our
numerical solution.
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algorithm is referred to as policy function iteration, see Puterman (1994). It is

instructive to consider policy iteration within the context of the social

planner's problem. The algorithm starts with an arbitrary allocation, repre-

sented by a consumption share in each state. Given this allocation, dis-

counted social utility for the policy can be calculated, as can the marginal

social utility. A \policy improvement" step can be made by solving the ¯rst-

order conditions for the social planner's problem, taking the continuation

value as given, and the newly derived allocation can be used for the next step

in the algorithm. This recursive solution method continues until the con-

vergence criteria are satis¯ed.

The policy iteration algorithm yields the solution to (B.1) and is a pair of

time-invariant policy functions that de¯ne the optimal consumption of the

two agent types as functions of the exogenous state variable ðY Þ and the

endogenous state variable ðX=Y Þ. Given these consumption processes, asset

prices are constructed using the state-prices de¯ned from the inter-temporal

marginal rate of substitution evaluated at the optimal consumption values.

Since this is a complete-markets equilibrium, the inter-temporal marginal

rates of substitution for the two agent types will be equalized at all dates and

states. Therefore, we solve for asset prices using the prices de¯ned in terms of

the utility function of the T-S Agent.

Speci¯cally, the price of the risk-free asset and the risky asset are calcu-

lated as:

S 0 Yt;
Xt

Yt

� �
¼ E �

U 0
1ðC �

1;tþ1Þ
U 0

1ðC �
1;tÞ

" #
; ðB:2Þ

and

S 1 Yt;
Xt

Yt

� �
¼ E �

U 0
1ðC �

1;tþ1Þ
U 0

1ðC �
1;tÞ

Ytþ1 þ S1 Ytþ1;
Xtþ1

Ytþ1

� �� �" #
: ðB:3Þ

Asset prices and returns are calculated by solving for the ¯xed point im-

plicit in this pricing equation. The expectations operator is calculated using

the transition matrix for the Markov chain describing the endowment process

and de¯ned on the discretized state space.

The arti¯cial data used in Sec. 3 were generated by ¯rst simulating a

sequence of draws of the endowment growth rate using the function normrnd

in Matlab. Given, initial values for the endowment and the habit index,

interpolations of the optimal policy functions (using the command interp2

in Matlab) were used to generate the consumption of the agent types and
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(implicitly) the habit index, and the asset data was constructed using

Eqs. (B.2) and (B.3).

Appendix C. Computing the Optimal Policy

in Partial Equilibrium

In the empirical literature on return predictability and the optimal con-

sumption/portfolio choice problem, a standard statement of the consumer's

problem is:

max
fCt ;
tgT

t¼0

E0

XT
t¼0

� t C
1��
t � 1

1� �

" #
; ðC:1Þ

subject to the budget constraint

Wtþ1 ¼ ðWt � CtÞ½
tðR1
tþ1 � R0

t Þ þ R0
t �; ðC:2Þ

where � and � have the same interpretation as in Sec. 2 and Wt is the

(stochastic) wealth of the agent held on arrival at date t. Consistent with the

model in Sec. 2, R1
tþ1 is the return to the risky asset from t to t þ 1 and R0

t is

the risk-free return from t to t þ 1, and it is known at time t. The consumer

chooses the consumption level, Ct , and the share of wealth held in the risky

asset, 
t.
30

If the agent's portfolio return between t and t þ 1 is de¯ned as

Rp
tþ1 � 
t R1

tþ1 � R0
t


 �þ R0
t

and ct � Ct=Wt is the consumption share of wealth, then Eq. (C.2) can be

rewritten as

Wtþ1 ¼ ð1� ctÞWtR
p
tþ1: ðC:3Þ

In general, the solution to the consumer's problem will consist of consumption

and portfolio rules that are functions of the investor's wealth, which serves as

the sole state variable, when the problem is stated in its recursive form as

VtðWtÞ ¼ max
c;


c 1��
t W 1��

t

1� �
þ �E½Vtþ1ðWtþ1Þ jWt �

( )
: ðC:4Þ

30There is actually some variation in the form of the portfolio problem solved in the di®erent
papers cited in the literature. Some authors do not solve the problem allowing for consumption
at intermediate dates, and Brennan et al. (1997) solve a continuous-time version of the
problem. The speci¯cation in Eqs. (C.1) and (C.2) corresponds most directly to Balduzzi and
Lynch (1999) and Brandt (1999).
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VtðWtÞ is the indirect utility function, and (C.4) is the Bellman equation of

the dynamic programming version of the problem (and VtðWtÞ is also called

the value function). When the investor's horizon is in¯nite and the model is

time-homogeneous, as we will assume, the value function no longer has an

explicit dependence on t.

Samuelson (1969) discusses the solution for a problem of the general form

of (C.1) and (C.2).31 In the absence of return predictability, the portfolio

allocation is a constant fraction of wealth. This fraction depends on both the

agent's risk tolerance and the market-determined (constant) trade-o® be-

tween the excess return and the risk of the portfolio. If returns follow a

Markov process whose transition density depends on a state variable (or

vector of state variables) Zt , then investor's Bellman equation becomes

VtðWt;ZtÞ ¼ max
c;


c 1��
t W 1��

t

1� �
þ �E½Vtþ1ðWtþ1;Ztþ1Þ jWt;Zt �

( )
; ðC:5Þ

and the solution is a pair of (time-invariant) policy functions, cðWt;ZtÞ and

ðWt ;ZtÞ that depend on both wealth and the state variable that predicts

future returns.

In particular,

VtðWt;ZtÞ ¼
ðc �

t Þ��W 1��
t

1� �
;

where c �
t is the optimal consumption ratio for the investor at time t and

satis¯es

c �
t ¼ ½1þ ð�E½ðRp

tþ1Þ1��ðc �
tþ1Þ�� jZt �Þ1=���1: ðC:6Þ

The optimal portfolio choice 
�
t solves the following equation

E½ðc �
tþ1R

p
tþ1Þ��ðR1

tþ1 � R0
t Þ jZt � ¼ 0: ðC:7Þ

(Recall that Rp
tþ1 ¼ 
tðR1

tþ1 � R0
t Þ þ R0

t .) In general, the solutions to these

equations are not available, and c �
t and 
�

t must be approximated numeri-

cally.

In order to calculate the optimal consumption and portfolio choices, we

need to solve Eqs. (C.6) and (C.7) recursively. The boundary condition is

c �
T ¼ 1 and 
�

T ¼ 0. At each time t, we solve (C.6) ¯rst to obtain the solution

for 
�
t , and then plug it into (C.7) to solve for c �

t . The expectation is taken

31Merton (1969) is the companion paper that considers the continuous-time limit of the
discrete-time problem.
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under a conditional probability distribution function pðRtþ1;Ztþ1 jZtÞ, which
is assumed to be known (and normal in most of the predictability studies).

Brandt (1999) uses similar ¯rst-order conditions in a non-parametric ap-

proach to solving the portfolio choice problem ¯t to empirical data. Barberis

(2000) uses a brute-force approach in solving the dynamic programing

problem through massive simulations. Barberis contains a detailed descrip-

tion of the procedure he uses to investigate the portfolio choice problem for an

investor maximizing only the utility of terminal wealth. Balduzzi and Lynch

(1999) use a backward induction procedure to solve the portfolio choice

problem, although they do not provide details of the procedure. Both papers

rule out borrowing and short-sales by restricting portfolio choice to lie inside

(0,1). This is primarily for computational convenience, and yet this restric-

tion is not a constraint faced by the investor in solving the optimal con-

sumption/investment problem. It is demonstrated, both here and in Brandt

(1999), that this restriction is frequently violated when it is not imposed. In

solving the ¯rst-order conditions (C.6) and (C.7), we will not impose these

constraints.

The non-linear structure of (C.7) poses a challenge for solving 
�
t ðZt;TÞ

directly. In solving for the optimal portfolio choice, the following iteration

algorithm is adopted, based on the observation that the portfolio choice for

the same state does not change too much from period to period. If the optimal

choice at t þ 1 is 
�
tþ1ðZt;TÞ, then the choice at t is 
tðZ ;TÞ ¼


�
tþ1ðZ ;TÞ þ "ðZÞ that supposedly satis¯es (C.7).

Using a ¯rst-order Taylor-series expansion to linearize in "ðZÞ, one can

immediately get an approximation for "ðZÞ, which can be obtained from

E½ðc �
tþ1ð
�

tþ1ð ~Rtþ1 � RftÞ þ RftÞÞ��ð ~Rtþ1 � RftÞ jZt �

’ �"tðZtÞE ðc �
tþ1ð
�

tþ1ð ~Rtþ1 � RftÞ þ RftÞÞ��
ð ~Rtþ1 � RftÞ2


�
tþ1ð ~Rtþ1 � RftÞ þ Rft

�����Zt

" #
:

Then replacing 
�
tþ1ðZ ;TÞ with 
tðZ ;TÞ, one can continue this iteration and

arrive at the solution. For a reasonable range of parameters, this algorithm

converges very quickly.
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