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Campbell, Hilscher, and Szilagyi (2008) show that firms with a high probability of default
have abnormally low average future returns. We show that firms with a high potential for
default (death) also tend to have a relatively high probability of extremely large (jackpot)
payoffs. Consistent with an investor preference for skewed, lottery-like payoffs, stocks
with high predicted probabilities for jackpot returns earn abnormally low average returns.
Stocks with high death or jackpot probabilities have relatively low institutional ownership
and the jackpot effect we find is much stronger in stocks with high limits to arbitrage.
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1. Introduction

Campbell, Hilscher, and Szilagyi (2008; henceforth CHS)
present convincing evidence that stocks with a high prob-
ability of default have low subsequent returns. This result is
puzzling; as they point out, it suggests that the market has
not priced distress risk appropriately. In considering possi-
ble explanations for this anomaly, CHS note that individual
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securities with high failure probabilities, as well as portfo-
lios of distressed stocks, have positive skewness. They
conjecture that investors with a strong preference for
positive skewness could bid up the prices of these secu-
rities, leading to low subsequent returns.

This conjecture is a natural one given recent papers on
the relation between skewness and returns. For example,
Barberis and Huang (2008; BH) consider an economy in
which investors have cumulative prospect theory prefer-
ences. They show that, in such an economy, positively
skewed securities can become overpriced and earn nega-
tive average excess returns. Also, growing empirical evi-
dence shows that securities with positive skewness or a
high probability of extreme positive outcomes (jackpots)1
1 Throughout the paper, we call these extreme positive outcomes
‘jackpots’ or jackpot returns, following Barberis and Huang (2008).
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have low subsequent returns (see, e.g., Mitton and
Vorkink, 2007; Kumar, 2009; Boyer, Mitton, and Vorkink,
2010; Bali, Cakici, and Whitelaw, 2011; Conrad, Dittmar,
and Ghysels, 2013). However, both CHS and BH argue that,
for such an effect to persist, risks or costs must exist to
prevent other rational investors (with potentially different
preferences) from arbitraging this effect away. Thus, two
important questions arise regarding the low average
returns of distressed stocks: (1) Is it skewness that
motivates investors to hold these stocks despite their low
expected returns? (2) Why are these low returns not
arbitraged away? In this paper, we focus primarily on
understanding the first question, by examining whether
skewed, lottery-like payoffs make stocks with high default
probabilities attractive to a segment of investors, resulting
in low average returns. Similar to CHS, we provide some
evidence on the second question by showing that the
jackpot effect we find is strongest in stocks for which
arbitrage trades could be relatively costly.

The connection between high default risk and high
jackpot probability can be understood in the context of the
Merton (1974) model, which views equity as a call option
on the assets of the firm. For firms close to the default
boundary, this optionality is more important, leading to
more skewed payoff distributions. Recent research finds
that options with greater skewness earn lower returns
(Ni, 2009; Boyer and Vorkink, 2011) and that options on
individual stocks, unlike index options, are traded more
heavily by individual investors (Ni and Lemmon, 2009).
Similarly, we argue that stocks that are close to default and
have skewed payoff distributions appeal to individual
investors with a preference for skewness and, therefore,
have low average returns.

We begin by confirming that distressed stocks have
lottery-like payoffs. We go on to perform a calibration, based
on the BH model, and show that the distribution of returns
of highly distressed stocks is sufficiently lottery-like that a
heterogeneous-holdings equilibrium exists in which these
stocks have negative expected returns. The predicted returns
for high default probability stocks from the calibrated BH
model match the low returns we observe in the data.

To investigate the relation between the effects of high
default probabilities and the probability of extreme positive
returns, we develop measures of both for individual secu-
rities. Specifically, following CHS, we use a logit model to
predict both distress (death) and extreme positive payoffs
(jackpots). This framework is also similar in spirit to that of
BH, who model skewed securities as having binary payoffs,
with jackpot payoffs arising with some probability q. In our
model, we use several benchmarks for the payoff to a
security to be considered a jackpot. We find that stocks
with high predicted probability of having a jackpot return
subsequently earn low average returns and have negative
four-factor alphas, with magnitudes similar to stocks with
high default probability. We also find that exante probabil-
ities of death and jackpots are highly correlated, with pair-
wise correlations of approximately 40% in our sample. More
than 50% of the firms in the highest quintile of predicted
distress are also in the highest quintile of predicted jackpot.
This correlation does not arise from volatility, as we find
that the probability of death is a far better predictor of
future jackpots than using volatility alone. Thus the jackpot
and the death effects are closely linked.

Because prior research argues that the preference for
skewness is more likely to be displayed by retail investors
than institutions (Kumar, 2009), we examine the owner-
ship structure for stocks with high default and high jack-
pot probability. We find that the degree of institutional
ownership declines significantly moving to higher default
and jackpot probability deciles in the cross section. Over
time, institutional ownership has increased in US markets,
particularly in smaller stocks as institutions search for
“greener pastures” (Bennet, Sias, and Starks, 2003). How-
ever, we find that, compared with the median stock,
institutional ownership has increased at a slower rate for
stocks in both the highest death and highest jackpot
deciles. Finally, using an event-study, we show that the
level of institutional ownership in a firm declines from
four quarters prior to the firm's entry into the top death or
jackpot probability decile and that this decline continues
for the four quarters subsequent to entry into the decile.
This suggests that retail investors are net buyers of a stock
as it approaches default or becomes more likely to have a
jackpot payoff, consistent with the hypothesis that these
stocks are largely owned by retail investors, who are more
likely to display a preference for skewness.

We also examine the sensitivity of jackpot stocks' low
returns to three measures of limits to arbitrage: size,
residual analyst coverage, and residual institutional owner-
ship (in which both residuals are calculated by controlling
for size). We find that the abnormally low returns of jackpot
stocks are statistically and economically significant among
securities when limits to arbitrage are expected to be high:
in small market capitalization, low residual institutional
ownership, and (weakly) low analyst coverage firms. Abnor-
mal returns are reduced substantially in magnitude (typi-
cally to half or less of their original value) and are
statistically insignificant for all measures when limits to
arbitrage are low. Thus, low returns to jackpot stocks are
associated with high limits to arbitrage in such stocks.

Finally, we examine the relation between the effects of
jackpot probability and default probability on expected
returns. That is, we test whether the jackpot effect is
separate from the effect of default probabilities. Jackpot
and default probabilities are sufficiently strongly corre-
lated that we begin with an indirect test of whether high
default probability firms have low returns when the
probability of a jackpot payoff is relatively low. To proxy
for predicted jackpots, we examine two sets of variables:
past return skewness and two variables related to growth
(market-to-book ratio and sales growth). We find that the
low returns shown by CHS are concentrated in those firms
in the top 30% of realized daily log return skewness over
the past three months and are not present in firms that
comprise the bottom 30% of realized past skewness. We
also sort firms in the highest predicted distress quintile
into traditional distressed firms and speculative distressed
firms. Traditional distressed firms are defined as firms
with low sales growth and low market-to-book ratios
(in the bottom 30% of the full sample for both) and
speculative distressed firms are those with high market-
to-book ratios and high sales growth (in the top 30% of the



J. Conrad et al. / Journal of Financial Economics 113 (2014) 455–475 457
full sample for both). The average probability of distress is
high (in the top quintile by construction) for both these
sets of firms. However, speculative distress firms have
almost twice the probability of a jackpot payoff as the
traditional distress firms. We find that only the speculative
firms have low subsequent average returns, with four-
factor alphas of �1.7% a month, while the alpha for the
traditional distress firms is not statistically different from
zero. This result suggests that the effect of a high jackpot
probability—or positive skewness—on subsequent returns
is not merely a different way to measure the effect of a
high distress probability on returns.

We also report results from Fama and MacBeth regres-
sions that allow us to test whether both default and
jackpot probabilities are important in predicting returns
while controlling simultaneously for other variables that
have been shown to affect expected return and are
correlated with both these measures. Given the relatively
strong relation between default and jackpots, we cannot
rule out the possibility that measurement error in jackpot
and distress probabilities could influence our results.
However, we find that both distress and jackpots have a
significant impact on expected returns after including
standard controls such as past volatility, market capitaliza-
tion, and book-to-market equity ratio. The effect of a 1
standard deviation shock to both jackpot and distress
generates an effect of very similar magnitude on returns.
This result also suggests that distress and jackpots could
have distinct effects, with both having an impact on
pricing and, as a consequence, on subsequent returns.2

Overall, our results are consistent with the hypothesis
that a preference for lottery-like payoffs explains why
rational investors (individuals with prospect theory–based
utility functions) hold on to distressed stocks even though
they have low average returns, with these low returns
persisting due to limits to arbitrage.

Our paper is also related to the extensive literature that
examines the relation between distress risk and expected
stock returns. Fama and French (1996), Vassalou and Xing
(2004), and Kapadia (2011) argue that a positive relation
exists between distress risk and expected returns.3

In contrast, Dichev (1998) finds that firms with high
O-scores from the Ohlson (1980) model, have low average
returns. Griffin and Lemmon (2002) argue that the results
in Dichev (1998) are driven by mispricing amongst high
distress risk stocks with high market-to-book ratios. This
result is similar to our evidence that the low returns to
stocks with high default probability, as shown by CHS, are
visible in speculative stocks but not in traditional distress
stocks. We also show that speculative stocks have much
larger probabilities for a jackpot payoff than traditional
distressed stocks, providing an economic rationale for
their high valuations.
2 In a simulation exercise, we show that, in the presence of
measurement error, Fama and MacBeth regressions containing two
correlated independent variables find both variables to be significant,
even if only one is truly correlated with expected returns.

3 Da and Gao (2010) argue that liquidity shocks associated with
changes in clientele are related to the results in Vassalou and Xing
(2004).
Recent explanations for the CHS results include Chava
and Purnanandam (2010), George and Hwang (2010), and
Garlappi and Yan (2011), who argue that small-sample
effects, the costs of financial distress, and differences in
shareholder recovery, respectively, are responsible for the
low average returns of high default probability stocks.
However, Gao, Parsons, and Shen (2012) find that the
distress effect is present in a sample of 39 countries and
is not related to the extent of creditor protection. Another
hypothesis is that idiosyncratic volatility is responsible for
the low returns of stocks with high default probabilities, as
Ang, Hodrick, Xing, and Zhang (2006) find that stocks with
high idiosyncratic volatilities have significantly lower
average returns. In their tests, CHS report that this does
not appear to hold, because they find that other variables
in their model besides volatility are important in predict-
ing the low returns of such stocks. In our own tests, we
find that both default probability and the probability of a
jackpot payoff retain their statistical and economic sig-
nificance in predicting returns in Fama and MacBeth
regressions after controlling for volatility. In fact, these
variables render idiosyncratic volatility insignificant in
these regressions.

Our paper is organized as follows. In Section 2 we show
that stocks with high default probability have lottery-like
payoffs and calibrate the Barberis and Huang (2008) model
to examine whether such payoffs would earn negative
average returns in the model. Section 3 describes the
model for estimating the probability of a jackpot payoff.
In Section 4, we examine whether a potential for a jackpot
return can explain the low average returns of stocks with
high default risk. In Section 5, we provide additional
results on the relation between the effects of distress
and jackpots on expected returns. Section 6 includes
further robustness checks, and we conclude in Section 7.

2. Motivation: the link between default probability
and jackpots

In this section, we test our conjecture that the prob-
ability of jackpot returns drives the default risk effect, by
examining whether sorts on default probability also result
in sorting on jackpot returns. We then perform a calibra-
tion exercise, based on the BH model, to examine whether
stocks with high default probability have sufficient skew-
ness for the BH equilibrium to exist.

2.1. Are distressed stocks likely to have jackpots payoffs?

This section examines the link between default prob-
ability and the probability of earning jackpot returns. We
first construct a measure of default probability (DEATHP) of
each stock from the model in CHS (Table 4, 12-month lag,
p. 2913). This measure is constructed as described in CHS
and requires quarterly Compustat data, restricting the
sample from 1972 to 2009. We recalculate DEATHP every
month and sort stocks into deciles based on DEATHP.
Table 1, Panel A, examines the properties of decile portfo-
lios based on DEATHP. We skip a month between comput-
ing DEATHP and measuring returns to ensure that our
results are not driven by short-term reversals. We first



Table 1
Motivation.

This table reports results for portfolios formed from sorts on DEATHP, the probability of default from the model in Campbell, Hilscher, and Szilagyi (2008).
Portfolios are value-weighted, are formed monthly, and skip a month between portfolio formation and measuring returns. Panel A reports excess returns
and four-factor (Fama and French three factors and momentum) alphas for these portfolios, the fraction of firms in each portfolio that realize annual
returns greater than three benchmarks over the next year, and the average skewness of daily returns of each stock over the next 12 months. The
benchmarks are log returns over 100%, arithmetic returns over 100%, and arithmetic returns over 75% over the next year. Panel B calibrates the Barberis and
Huang (2008) model. The payoffs of the lottery asset are L with probability q, and l otherwise. We set L¼5 and l¼1. For a given q, we search for a price P,
such that the heterogeneous holding equilibrium exists. We report P, L/p, l/P, and E(r�rf), the expected excess returns of the lottery asset. The sample
period is 1972–2009.

Panel A: Key statistics of DEATHP sorted portfolios

1 2 3 4 5 6 7 8 9 10 1–10

Excess return 0.62 0.53 0.55 0.45 0.41 0.41 0.35 0.24 0.00 �0.67 1.28
t-Statistic 2.74 2.44 2.40 1.96 1.65 1.54 1.18 0.72 �0.01 �1.44 3.40
Four-factor alpha 0.11 0.01 0.11 0.05 �0.05 0.01 0.01 �0.19 �0.33 �1.10 1.21
t-Statistic 1.20 0.09 1.37 0.68 �0.61 0.12 0.08 �1.15 �1.84 �4.46 4.32
Logreturns 4100% 1.4% 1.4% 1.5% 1.5% 1.6% 1.6% 1.8% 2.0% 2.6% 3.9% �2.5%
Arithmetic returns 4100% 4.6% 4.8% 4.9% 4.8% 5.0% 5.2% 5.6% 6.0% 7.1% 9.1% �4.5%
Arithmetic returns 475% 8.1% 8.1% 8.2% 8.1% 8.4% 8.8% 9.3% 9.5% 10.7% 12.5% �4.5%
Skewness (tþ1, tþ12) 0.68 0.58 0.62 0.67 0.75 0.84 0.94 1.03 1.25 1.58 �0.90
Median institutional ownership 42.7% 45.2% 42.7% 39.6% 35.6% 30.6% 24.5% 18.7% 14.5% 12.5% 30.2%

Panel B: Barberis and Huang (2008) calibration

q P L/P l/P E(r�rf)

0.1 1.38 3.63 0.73 �0.33%
0.09 1.35 3.70 0.74 �1.28%
0.08 1.32 3.78 0.76 �2.22%
0.07 1.29 3.86 0.77 �3.14%
0.06 1.27 3.95 0.79 �4.00%
0.05 1.23 4.05 0.81 �4.78%
0.04 1.20 4.16 0.83 �5.43%
0.03 1.16 4.29 0.86 �5.86%
0.02 1.12 4.45 0.89 �5.90%
0.01 1.07 4.66 0.93 �5.10%

4 We thank the referee for suggesting that we calibrate the Barberis
and Huang (2008) model.
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show that the findings in CHS extend to our sample: Stocks
with high predicted default probability have low returns
and low Carhart four-factor alphas. The difference between
the safest and the most likely to default decile is about
�1% per month for both returns and four factor alphas.
Thus, stocks with high default probability seem singularly
unattractive to investors. However, they have one redeem-
ing feature. As the next three rows of Table 1 show, these
stocks have high probabilities of delivering jackpot returns.
For example, the fraction of stocks in the safest portfolio
that has log returns greater than 100% over the next year is
1.4%. This fraction almost triples, to 3.9%, for the portfolio
with the highest default probability. Similarly, the average
skewness of daily stock returns in the safest portfolio decile
over the next year is 0.68, and the average skewness
observed in the portfolio with the highest default prob-
ability increases to 1.58. We also examine the time series
average of median institutional ownership for these port-
folios. We can see that stocks with high DEATHP have low
institutional ownership. This suggests that these stocks are
largely owned by retail investors, who are more likely to
display a preference for skewness (Kumar, 2009). These
stocks are also likely to have high arbitrage costs, consistent
with the arguments in CHS and Barberis and Huang (2008).

Barberis and Huang (2008) investigate the pricing of
jackpot assets in an economy composed of investors with
cumulative prospect theory utility functions. Investors with
such utility functions apply subjective probability distribu-
tions in evaluating gambles. These distributions overweight
the tails of the objective probability distribution to reflect
experimental evidence consistent with a preference for
skewed gambles. Barberis and Huang (2008) show that a
heterogeneous holding equilibrium exists in which inves-
tors with cumulative prospect theory utility functions are
indifferent between holding the market portfolio and an
underdiversified portfolio in which the asset with jackpot
returns has a nontrivial weight. The asset with jackpot
returns earns negative expected returns in this equilibrium.
However, for the equilibrium to exist, the payoffs of the
jackpot asset must be sufficiently skewed. We calibrate the
Barberis and Huang (2008) model to test whether stocks
with high distress risk have sufficient skewness for the
heterogeneous holding equilibrium to exist.
2.2. Calibrating the Barberis and Huang (2008) model

In Barberis and Huang (2008), the jackpot asset has a
binary payoff structure (L,q; l, 1�q), earning a gross payoff
of L with probability q, and a payoff of l with probability
1�q.4 To closely mimic this setup, we model the payoff of



J. Conrad et al. / Journal of Financial Economics 113 (2014) 455–475 459
the typical stock in the highest distress risk decile portfolio
as binary. We set a jackpot return as a log return greater
than 100% over the next year. Thus, the likelihood of a
jackpot return is q¼ Probability of LogðRi;tÞ41, where Ri,t
is the gross return of stock i, at time t, in the highest
distress risk portfolio.

In the jackpot state, the expected gross return of a
typical stock in this portfolio with price P is L/P. Given
our definition of a jackpot return, this return is EðRi;t j
LogðRi;tÞ41Þ. Similarly, the expected return in the bad
state is l=P ¼ EðRi;t j LogðRi;tÞr1Þ. We measure q, L/P, and l/
P using their sample means from the pooled sample of all
stocks in the highest distress decile portfolio from 1972 to
2009. We find that q̂¼ 3:9%, dL=P ¼ 4:24, and cl=P ¼ 0:91.

To see if this payoff structure supports the heterogeneous-
holdings equilibrium, we solve the BH model for different
values of q, using their assumptions regarding values for
parameters of the utility function, the risk-free rate, etc. In
our initial calibration, we set L¼5 and l¼1. This results in
expected returns that are close to those in the data. To
determine whether the heterogeneous-holdings equilibrium
exists, we follow the procedure in BH. The intuition under-
lying the solutionmethod in BH is to search for an equilibrium
with two groups of investors. One group's optimal portfolio is
the market and the risk-free asset, and the other's is the
market, a position in the risk free asset and a long position in
the jackpot stock. Given the payoff structure of the jackpot
asset, BH search for a price for that asset such that both
groups have the same utility for their optimal portfolios. They
find that such a price (and, hence, equilibrium) exists only if
the jackpot security is sufficiently skewed.

For a given value of q, we follow BH and search for a
price P, such that the heterogeneous-holdings equilibrium
exists. Table 1, Panel B, shows prices, returns in each state,
and expected returns for equilibria with values of q
ranging from 0.01 to 0.10. As the table shows, for q¼4%,
the gross returns in the good state are 4.16, in the bad
state, 0.83. These values of q, L and Ɩ are similar to those
observed in the sample: 3.9%, 4.24, and 0.91, respectively.
The close correspondence between the model results and
the data indicates that stocks in the highest portfolio of
distress risk are sufficiently lottery-like to have negative
expected returns in the BH model. Using our calibrated
parameters, the expected excess return over the risk-free
rate for such stocks is �5.4%. In the calibration, the market
risk premium is 7.5% per year. Therefore,, the high DEATHP
portfolio should earn a return in excess of the market of
�12.9% per year according to the model. This return is of
similar magnitude to the excess return over the market
that the high DEATHP portfolio earns in the data, of �13.1%
per year.5
5 We also try additional calibrations, similar to Barberis and Huang
(2004) in which we use the full distribution (in bins of 50 stocks) of
returns and search for a value of c such that when returns of high distress
risk stocks are shifted by c the heterogeneous holdings equilibrium
obtains. We find that high distress stocks are underpriced according to
the model even after taking into account their low returns. We need to
reduce the returns of high distress stocks by approximately 0.6% per
month for the equilibrium to exist.
These results indicate that the possibility of earning
jackpot returns in our sample has the potential for
explaining these securities' low subsequent returns.
3. A logit model for jackpot returns

In this section, we build a model to predict the exante
likelihood of jackpot returns and examine whether a
correlation between jackpot and distress offers an expla-
nation of why individuals might hold these stocks.
Coupled with limits to arbitrage, these findings could
explain the low returns earned by distressed firms.
In particular, we define jackpot returns (Section 3.1),
describe our model to predict the likelihood of future
jackpot payoffs (Section 3.2), examine the key determi-
nants of jackpot probabilities (Section 3.3), investigate
alternate specifications (Section 3.4) and analyze the out-
of-sample forecasting power of our model (Section 3.5).
3.1. Defining jackpots

We define jackpot returns as log returns greater than
100% over the next year. We choose to define jackpots as a
binary event for several reasons. First, this corresponds to
the skewed asset payoff in Barberis and Huang (2008),
which is binary, thereby making it easier to relate our
results to those in Barberis and Huang (2008), as in the
calibration exercise described above. Second, similar to
bankruptcy, an extremely high return is a salient event
that attracts investor attention and is easier to understand
and measure as compared with moments of the return
distribution. Prior research has shown that investors' risk
attitudes to such rare events are very different from their
attitudes to normal events. Psychological studies such as
Tversky and Kahneman (1992) show that investors behave
as if they overweight small probability events. Equilibrium
models such as Liu, Pan, and Wang (2005) show that rare
events require a significant risk premium and this pre-
mium helps explain the option volatility smirk in the index
option market. Third, defining jackpots as binary events
allows us to use the same logit model that CHS used in
measuring default probabilities, which makes it easier to
examine the relation between the two probability mea-
sures. Because our cutoff of annual log returns in excess of
100% is adhoc, we try different cutoffs in defining jackpot
returns and obtain similar results in our robustness tests.

Fig. 1 shows the time series of ex post jackpot prob-
abilities, or the fraction of firms that realize returns greater
than 100% over the next year, with National Bureau of
Economic Research dated recessions in gray. The time
series suggests that the chance of earning jackpot returns
is typically high just when the economy is coming out of a
recession, although there are exceptions, such as the 1997–
1999 period when Internet stocks did exceptionally well.
3.2. A logit model to predict jackpots

We model the probability of a firm achieving a jackpot
return in the next 12 months as a logistic distribution
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given by

Pt�1ðJackpoti;t;tþ12 ¼ 1Þ ¼ expðaþb� Xi;t�1Þ
1þexpðaþb� Xi;t�1Þ

; ð1Þ

where Jackpoti;t;tþ12 is a dummy variable that equals one if
the firm's log return in the next 12-month period is larger
than 100% and Xi;t�1 is a vector of independent variables
known at t�1. An increase in the value of aþb� Xi;t�1

indicates that the probability of achieving a jackpot return
in the next 12 months is higher. For each firm, we begin by
estimating the parameters of a baseline logit model using
at least 20 years of historical data and then construct out-
of-sample estimates of jackpot probabilities. We reesti-
mate this model once a year (in June) to avoid overlapping
returns.

We use variables employed by prior skewness research
(Chen, Hong, and Stein, 2001; Boyer, Mitton, and Vorkink,
2010) to predict jackpot returns. These variables include
the stock's (log) return over the last 12 months (RET12),
volatility (STDEV) and skewness (SKEW) of daily log
returns over the past three months, detrended stock
turnover ((TURN: (six-month volume/shares outstanding)
Fig. 1. The time-series of mean jackpot probability.
This figure plots mean realized jackpot probability for all stocks from
1951 to 2008. Jackpot is a binary variable equal to one if log returns over
the next year for a stock are greater than 100%. For example, the point at
31 Dec 2008 reflects the fraction of stocks that have log returns greater
than 100% from January 01, 2009 to December 31, 2009.

Table 2
Summary statistics.

This table reports summary statistics for key variables used in this paper. Thes
months when data are available for all variables. Panel B reports statistics for the
the next 12 months measured from June each year. The sample period is 1951–

SKEW RET12 AGE

Panel A: Summary statistics for key variables
Mean 0.213 �0.007 15.773
Standard deviation 1.006 0.574 14.671
Minimum �7.734 �8.007 0.496
Maximum 7.809 4.416 83.915
Number of observations 1,824,924

Panel B: Summary statistics for jackpot subsample
Mean 0.273 �0.133 9.764
Standard deviation 1.011 0.721 9.132
Minimum �6.988 �3.928 0.496
Maximum 5.564 2.627 78.918
Number of observations 3,136
minus (18-month volume/shares outstanding)), and size
(SIZE: log market capitalization). We augment these vari-
ables with three new variables: firm age (AGE: number of
years since first appearance on the Center for Research in
Security Pricing data set), asset tangibility (TANG: gross
property plant and equipment (PPE)/total assets), and sales
growth (SALESGRTH) over the prior year. Appendix A pro-
vides further details on the construction of these variables.
Our priors are that young, rapidly growing firms with less
tangible assets are more likely to exhibit extremely high
returns. All accounting data are lagged by six months, to
ensure that these data are known to investors, and all
independent variables are winsorized at 5% and 95%, follow-
ing CHS. The accounting variables that we use to predict a
jackpot return are constructed from annual Compustat data.
Our sample begins with accounting data for the year ending
December 1950, matched to CRSP data for June 1951. The
data are relatively sparse initially, with 326 firms with non-
missing total assets at the end of June 1951, rising to a
maximum of 6,834 firms in June 1997 and declining to 3,972
firms at the end of our sample in 2009. Any potential
survivorship bias in the early years of the Compustat sample
does not affect our results, because all of our key tests are
based on out-of-sample predicted probabilities for jackpots
beginning in 1972. Beginning our sample construction in
1951 enables us to have 20 years of data to estimate our first
set of out-of-sample jackpot probabilities in 1972.

Table 2, Panel A, provides summary statistics for these
variables over the 1951–2009 sample period. Panel B
examines these variables for firms that subsequently
realized jackpot returns over the next year. Jackpot firms
tend to be smaller, younger, and more volatile and have
fewer tangible assets and lower prior returns than firms on
average. We examine the relative importance of these
variables in a multivariate context below.

3.3. What predicts jackpot returns?

Table 3, Panel A, reports results from our baseline
model for predicting jackpot returns. All variables are
statistically significant. Stocks with higher past skewness,
higher returns in the past 12 months, higher sales growth
e variable are defined in Appendix A. Panel A reports statistics for all firm-
sub-sample of firms that realize a jackpot return (log return 4100%) over
2009.

TANG SALESGRTH TURN STDEV SIZE

0.532 0.170 0.00162 0.035 4.753
0.348 0.292 0.082 0.027 2.062
0.048 �0.268 �5.156 0.001 �4.550
1.216 0.983 14.829 0.716 13.309

0.462 0.197 0.00174 0.051 3.584
0.323 0.354 0.079 0.033 1.666
0.048 �0.268 �1.276 0.006 �0.717
1.216 0.983 1.982 0.564 10.927



Table 3
In-sample predictors of jackpot returns.

This table reports annual in-sample logit regressions of a dummy
variable that equals one if a stock's log return over the next 12 months
(July to June) exceeds 100%, on a set of predictive variables from 1951 to
2009. The key predictive variables are defined in Appendix A. All
predictive variables are known as of the end of June, with accounting
data lagged by six months to ensure availability. In addition, NASDAQ,
SMALLDUMMY, and MEDIANDUMMY are dummy variables that take the
value of one for Nasdaq listed firms, and firms in the bottom and median
tercile of market capitalization, respectively.

Variable Coeffi-
cient

t-Statistic Percent change
in odds ratio for
a 1s change in X

R2

Panel A: Baseline model
Intercept �3.29 �36.00 5.76%
SKEW 0.06 3.37 7.40
RET12 0.18 4.42 9.10
AGE �0.02 �8.75 �27.60
TANG �0.25 �3.45 �8.20
SALESGRTH 0.29 4.10 8.20
TURN �0.43 �2.18 �3.50
STDEV 0.99 16.43 32.90
SIZE �0.22 �15.94 �34.90

Panel B: Model 2
Intercept �5.18 �56.48 6.07 6.07%
SKEW 0.06 3.17 7.60
RET12 0.17 4.27 7.90
AGE �0.02 �8.03 �27.70
TANG �0.13 �1.86 �4.20
SALESGRTH 0.25 3.60 6.40
TURN �0.37 �1.91 �3.20
STDEV 0.88 13.81 29.20
NASDAQ 0.15 2.97 7.30
SMALLDUMMY 1.18 16.51 45.00
MEDIANDUMMY 0.77 10.61 40.70

Panel C: Model 3
Intercept �5.60 �21.23 6.39 6.39%
ROMA 0.02 0.06 0.00
MLEV 0.10 0.93 2.00
RELSIZE �0.19 �11.06 �31.10
CASH 0.51 4.21 6.70
EXRAVG 3.98 10.39 21.40
STDEV 0.63 9.09 19.30
MB 0.05 7.05 15.40
PRC15 �0.50 �9.91 �24.10
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rate, and higher volatility are associated with a higher
probability for jackpots. Although the results in Table 2
show that jackpot firms have low average past returns in a
univariate context, this negative correlation is not evident
once we control for the other variables in our model.
Younger firms and firms with less tangible assets, lower
stock market turnover, and smaller stock market capitali-
zation are more likely to have jackpot returns. Never-
theless, the importance of these variables is different.
In the table, we report the percentage change in the odds
ratio for a 1 standard deviation change in the independent
variable. The odds ratio is the log of the ratio of the
probability of a jackpot return divided by the probability
of not achieving a jackpot return. Among all the variables,
AGE, STDEV, and SIZE have the largest impact on the odds
ratio of the logistic regression. A 1 standard deviation
increase in firm age reduces the odds ratio for jackpots by
27%, a 1 standard deviation increase in STDEV increases the
odds ratio by 32.9%, and a 1 standard deviation increase in
firm size reduces the odds ratio by 34.9%.

3.4. Alternate specifications

We explore several other specifications for forecasting
jackpot returns to understand the robustness of our results
to model specification. Panels B and C of Table 3 report
alternative logit models. In Model 2 we replace the size
variable in the baseline model with two dummy variables:
SMALLDUMMY and MEDIANDUMMY. SMALLDUMMY is a
dummy variable that equals one if the market capitaliza-
tion of the stock belongs to the bottom tercile and equals
zero otherwise. Similarly, MEDIANDUMMY is a dummy
variable for the middle market capitalization tercile. The
introduction of the size dummy variable is to accommo-
date potential nonlinearity in the size effect. We also add
in a dummy variable for firms listed on Nasdaq. The two
size dummy variables and the Nasdaq dummy all show up
significantly.

Model 3 includes exactly the same variables used in
CHS. Variables are constructed as described in their paper,
except that ours are based on annual instead of quarterly
Compustat data (see Appendix A for details). These vari-
ables are return on market assets (ROMA), relative size
(RELSIZE), market leverage (MLEV), cash and short-term
investments as percentage of market equity and total
liability (CASH), average past 12-month return over the
Standard & Poor's (S&P) 500 index return (EXRAVG), return
volatility (STDEV), market-to-book ratio (MB) and the log
of stock price truncated at $15 (PRC15). All enter the logit
regression with a significant coefficient with the exception
of ROMA and MLEV. RELSIZE and PRC15 are inversely
related to jackpots as well as to default. That is, being a
relatively small size firm or low priced stock increases the
probability of both jackpot returns and distress, consistent
with a limits-to-arbitrage explanation of why these returns
persist. High cash holding reduces the distress probability
but increases jackpot probability. High past EXRAVG lowers a
firm's distress probability and increases jackpot probability.
STDEV has the same effect on both distress and jackpots,
with high STDEV associated both with high distress and
jackpot probabilities. Being a growth firm (high MB) also
increases both distress and jackpot probabilities. Return on
market assets (ROMA) and market leverage (MLEV) are
significant in predicting distress but are not significant in
forecasting jackpots. Both Model 2 and Model 3 achieve
higher pseudo R-squares of 6.07% and 6.39%, respectively.
We show in subsequent tests that these alternative models
produce similar results in out-of-sample forecasts as our
baseline model and that returns earned in strategies based
on these models are also similar to those obtained using the
baseline model.

3.5. Predictive power

The baseline logit model achieves a pseudo R-square of
5.76%. The relatively low R-square is not surprising, as it is
well known that extreme events are difficult to forecast.
We test whether this relatively low predictive power
allows us to generate reliable measures of jackpot returns
out-of-sample. Starting from 1951, we use all available



6 The rebalancing is due to changes in market variables such as size,
volatility, and past annual returns, because the other accounting-based
variables change only annually. We have similar results if we rebalance
our portfolios annually (four-factor alpha for the ‘1–10’ portfolio of 0.65%
per month) or if we do not skip a month between measuring jackpot
probability and returns (four-factor alpha for the ‘1–10’ portfolio of 1.1%
per month). These results are available upon request.
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data (expanding annual rolling windows) to reestimate
our baseline model and then generate out-of-sample
forecasts for the probability of jackpot returns with each
set of estimated parameters. The first predicted out-of-
sample jackpot return is in 1972; the last out-of-sample
forecast is in 2009. The 1972–2009 forecasts match the
availability of the CHS default probability measure that we
use, along with the jackpot probabilities reported in other
tests. We borrow from the default prediction literature
(see Vassalou and Xing, 2004) in using the accuracy ratio
to evaluate the effectiveness of the out-of-sample predict-
ability. The accuracy ratio reveals the ability of a model to
predict actual jackpot returns over a one-year horizon.
A completely uninformative model yields an accuracy ratio
of zero and a perfect model yields an accuracy ratio of
100%. Appendix B describes the construction and rationale
underlying the accuracy ratio.

The out-of-sample predicted jackpot probability from
our baseline model has an accuracy ratio of 77.41% in
predicting realized jackpot returns. In particular, 63% of
stocks that realize an ex post jackpot return are in the top
1% of exante predicted jackpot probability; 70% of stocks
that realize a jackpot return are in the top 10% of predicted
jackpot. We also compare the predictability of our model
with the predictive power obtained using only volatility to
predict jackpots. Even though volatility is very important
in forecasting jackpots, our out-of-sample predicted jack-
pot probability measure has substantially higher predict-
ability for realized jackpots than volatility does. Using
volatility alone, only 3.36% of stocks that realize jackpot
returns are in the top 1% of stocks with highest volatility;
23.88% of stocks that realize jackpot returns are in the top
10% of volatility. The accuracy ratio for volatility itself is
only 37.8%. This shows that our model is not just driven by
volatility. Other variables also matter a great deal in
predicting jackpots.

Foreshadowing our primary result, we compute the
accuracy ratio from using DEATHP, the probability of
default according to the model in CHS, to predict jackpots.
We find that DEATHP does remarkably well, with an
accuracy ratio of 54.07%. Thus, predicted default does a
much better job of predicting jackpots than using volatility
alone, although it fares worse than our full model for
predicting jackpots out-of-sample. This result also indi-
cates that the commonality between the two measures of
predicted distress and jackpots is not driven by volatility
alone.

4. Can the probability of jackpot returns explain the
distress risk puzzle?

In this section, we test whether a high probability of
earning jackpot returns can explain the low average
returns of high distress risk stocks. In Section 4.1, we
examine whether stocks with a high probability of jackpot
returns have low average returns. In Section 4.2, we
investigate the ownership structure of stocks sorted on
the basis of DEATHP and JACKPOT. In Section 4.3, we
examine the effect of limits to arbitrage on the returns of
stocks with high jackpot probability. In Section 4.4, we
compare both characteristics and factor loadings of
distress-sorted portfolios and predicted jackpot sorted
portfolios. Finally, in Section 4.5, we analyze the correla-
tion between the probability of jackpots and the prob-
ability of distress and examine how the distress strategy
and jackpot strategy are related to each other.
4.1. Average returns for strategies based on predicted
jackpot probability

We examine whether trading strategies based on the
probability of jackpot returns can generate similar return
patterns as those based on CHS default probability.
At month t, we use the out-of-sample predicted jackpot
probability computed using available information to sort
all stocks into ten deciles and compute value-weighted
portfolio returns for month tþ2. We skip a month
between portfolio formation and measuring returns to
alleviate concerns regarding the potentially confounding
microstructure effects such as bid-ask bounce. Portfolios
are rebalanced each month.6 Our out-of-sample predicted
jackpot probability measures begin in 1972, to allow at
least 20 years of data for the initial estimation.

In Table 4, we report the results from tests on value-
weighted decile portfolios formed from sorts on out-of-
sample predicted jackpot probability. In Panel A, we report
average excess returns over the risk-free rate for these
portfolios as well as the alphas estimated from three
different models: capital asset pricing model (CAPM),
Fama and French (1993) three-factor model, and Carhart
(1997) four-factor model. The average excess returns in the
first row of Panel A do not show a monotonic pattern.
In fact, average excess returns increase from Decile 1 to
Decile 4 before decreasing. The sharp drop in excess
returns comes in Decile 9 (0.03% per month) and Decile
10 (�0.62% per month). A long-short portfolio that holds
the decile of stocks with the lowest jackpot probability and
goes short the decile with the highest jackpot probability
yields an average return of 1.06% per month.

Turning to risk-adjusted returns, we find that control-
ling for risk using the CAPM, Fama and French three-factor
models or Carhart (1997) four-factor model does not help
explain the low returns of the portfolios with high jackpot
probability. In fact, if anything, the poor performance of
high predicted jackpot probability stocks looks worse after
using these models. The alpha on the long-short portfolio
increases to 1.39% for the CAPM, 1.39% for the Fama and
French three-factor model, and 1.1% for the Carhart four-
factor model. In each model, the alpha is highly significant.
In Panel B of Table 4, we report the loadings on MKT
(market), SMB (small minus big), HML (high minus low),
and WML (winner minus loser) in the four-factor model
for the ten jackpot portfolios. The variation in factor
loadings across these portfolios is striking. The loading



Table 4
Portfolios formed from a univariate sort on out-of-sample predicted jackpot probability.

This table presents statistics of portfolios formed from decile sorts on predicted jackpot probability (JACKPOTP). JACKPOTP is from out-of-sample,
expanding window, logit regressions of our baseline model (Table 3). Panel A reports excess returns and alphas of these portfolios from Capital asset pricing
model, Fama and French, and four -factor (Fama-French and momentum) regressions. Panel B presents portfolio loadings in the four factor regression, and
Panel C presents the characteristics of these portfolios. The sample period is 1972 to 2009.

1 2 3 4 5 6 7 8 9 10 1–10

Panel A: Four factor alphas (in % per month) of value-weighted portfolios sorted on JACKPOTP
Excess return 0.44 0.52 0.54 0.61 0.53 0.56 0.45 0.24 0.03 �0.62 1.06
t-statistics 2.29 2.15 1.97 2.04 1.61 1.53 1.14 0.58 0.06 �1.29 2.63
CAPM alpha 0.07 0.05 0.02 0.06 �0.06 �0.08 �0.22 �0.44 �0.69 �1.32 1.39
t-statistics 1.31 0.84 0.21 0.48 �0.43 �0.44 �0.99 �1.84 �2.54 �4.11 3.84
Three-factor Alpha 0.09 0.07 0.03 0.05 �0.04 �0.01 �0.16 �0.40 �0.64 �1.30 1.39
t-Statistics 2.43 1.10 0.39 0.50 �0.41 �0.11 �1.28 �2.61 �3.64 �6.22 6.28
Four-factor Alpha 0.04 0.11 0.12 0.06 0.01 0.08 �0.06 �0.24 �0.45 �1.06 1.10
t-Statistics 0.98 1.80 1.67 0.65 0.16 0.82 �0.44 �1.37 �2.48 �5.01 4.85

Panel B: Factor Loadings in the four-factor Model
Market 0.91 1.03 1.10 1.14 1.18 1.20 1.24 1.23 1.26 1.17 �0.26
t-Statistics 70.13 60.43 49.85 40.94 52.37 42.35 32.38 25.18 23.60 16.94 �3.54
SMB �0.26 0.07 0.30 0.56 0.76 0.90 1.11 1.18 1.39 1.62 �1.88
t-Statistics �18.40 2.83 6.90 13.61 21.84 19.50 23.42 18.68 12.68 13.20 �14.70
HML 0.04 �0.06 �0.12 �0.09 �0.23 �0.35 �0.37 �0.39 �0.45 �0.48 0.52
t-Statistics 1.30 �1.48 �3.50 �1.98 �5.76 �6.59 �6.08 �4.14 �4.13 �3.13 3.01
WML 0.05 �0.04 �0.09 �0.01 �0.05 �0.10 �0.10 �0.16 �0.18 �0.23 0.28
t-Statistics 2.76 �2.19 �4.74 �0.43 �1.82 �2.75 �1.78 �2.75 �2.51 �2.95 3.20

Panel C: Portfolio characteristics
Portfolio standard deviation 4.79 4.65 4.91 4.86 5.26 5.74 6.36 6.96 8.28 9.86 7.47
Portfolio skew �0.18 �0.15 �0.25 �0.25 �0.44 �0.41 �0.30 �0.30 0.13 0.70 �0.48

7 The median firm is defined differently in the two panels. In Panel A,
we compute the median over all firms for which DEATHP is available, and
in Panel B we do it for all firms for which JACKPOTP is calculated. Because
CHS substitute cross-sectional means for any missing data items, and we
do not include firms with missing data while computing JACKPOTP,
DEATHP is available for more firms than JACKPOTP.
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on MKT increases from Decile 1 to Decile 9 and then falls
slightly in Decile 10. The SMB loading across the ten
jackpot portfolios increases monotonically from �0.26 in
Decile 1 to 1.62 in Decile 10, and the HML loading
decreases from 0.04 to �0.48 going from lowest jackpot
probability decile to highest jackpot probability decile.
This is indicative of the prevalence of small and growth
stocks in the deciles with high jackpot probabilities. High
jackpot probability stocks are also likely to be loser stocks
as they load negatively on the momentum factor WML.

The jackpot strategy (going long the least likely and
short the most likely decile of JACKPOTP) has an annualized
excess return of 12.71% and a standard deviation of 25.88%.
The Sharpe ratio is 0.49, higher than the stock market
(0.32) over the same time period and comparable to that of
HML (0.49) and WML (0.55). The first eight deciles of
jackpot-sorted portfolios have negatively skewed portfolio
returns, while Deciles 9 and 10 have positive skewness of
0.13 and 0.70, respectively.

4.2. Institutional ownership

In the previous subsection, we present evidence that
investors bid up the price of securities with a high
probability of a jackpot payoff, consistent with a prefer-
ence for skewness. BH suggest that individual investors are
more likely than institutions to display a preference for
stocks with lottery-like payoffs. Kumar (2009) finds that
retail investors exhibit a preference for stocks with lottery-
like features, while institutions do not. We, therefore,
investigate the ownership structure of stocks sorted on
the basis of DEATHP and JACKPOTP. Institutional ownership
is defined as the fraction of shares owned by institutions in
the Thomson Reuters Institutional Holdings database.
Fig. 2 plots the median institutional ownership for the
median firm and for the tenth deciles of DEATHP (Panel A)
and JACKPOTP (Panel B). Consistent with prior research
(e.g., Bennet, Sias, and Starks, 2003), Panel A shows that
median institutional ownership has increased dramatically
in the United States from 15% at the start of the sample in
1980 to 58% at the end of the sample in 2009. High DEATHP
stocks have substantially less institutional ownership than
the median stock for which DEATHP data are available,
with their institutional ownership increasing from 3% at
the start of the sample to 15% at the end. The difference
between institutional ownership for the median stock for
which DEATHP data are available and a high DEATHP stock
has increased over time. A regression of this difference on
a linear time-trend results in a significant coefficient on
the time-trend of 0.68% per year (not tabulated). Thus, the
increase of institutional ownership for the median stock
has been more rapid than that for a stock in the highest
DEATHP quintile. Similarly, Panel B shows that high JACK-
POTP stocks also have lower institutional ownership than
the median stock (for which data are available to compute
JACKPOTP).7 The difference in institutional ownership
between the median firm and high JACKPOTP firms also
increases significantly over time, with a coefficient of 1.05%
per year.
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Fig. 2. Institutional ownership, default, and jackpot probability.
This figure plots institutional ownership for the top jackpot probabililty
and default probability decile portfolios. Panel A reports median institu-
tional ownership for the top DEATHP decile along with median institu-
tional ownership for all firms with sufficient data available to compute
DEATHP. Panel B reports median institutional ownership for the top
JACKPOTP decile, along with median institutional ownership for all firms
with sufficient data available to compute jackpot probability. Panels C and D
report results for an event -study, in which the event is the entry of a firm
into the top DEATHP (Panel C) or jackpot probability (Panel D). We present
average excess institutional ownership of the firm over the mean institu-
tional ownership that quarter (IO, left axis), for four quarters before and
four quarters after entry into the top decile, along with the average DEATHP
or JACKPOT DECILE (right axis). To ensure a comparable sample, we restrict
the sample to those firms that have data for the four prior quarters.
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We also find evidence that institutional ownership is
sensitive to increases in default and jackpot probabilities.
Panels C and D present results of an event-study in which
the event is the entry of the firm into the top DEATHP (Panel
C) or JACKPOTP (Panel D) quintile. We de-mean institutional
ownership by subtracting the mean institutional ownership
for all firms that month, and compute average demeaned
institutional ownership for all firms in event time. Panel C
shows that demeaned institutional ownership declines from
�12.5%, four quarters prior to the entry into the top decile of
DEATHP, to �16.3% at the quarter of entry into the top decile
and declines further post-entry to �17.8% four quarters after
entry into the top decile. Both changes (from Quarter �4 to
Quarter 0 and from Quarter 0 to Quarter 4) are statistically
significant with p-values from a test of equality of means of
less than 0.01. Similarly, Panel D shows that de-meaned
institutional ownership around entry into the highest JACK-
POTP decile declines from �16.5% to �18.4% from Quarter
�4 to Quarter 0 and further declines to �19.8% in Quarter 4.
Again, both changes are statistically significant, with p-values
of less than 0.01.8

Overall, this subsection shows that despite the increase in
institutional ownership in the US stock market, stocks
classified as high DEATHP or high JACKPOTP firms have a
majority of stocks held by retail investors. Also, the increase
in institutional ownership for such firms over time has been
slower than that of the median firm. Finally, institutional
ownership declines significantly four quarters prior and four
quarters subsequent to entry into the top DEATH or JACKPOT
decile. This suggests that retail investors (noninstitutions) are
net buyers of such stocks as they approach default or become
more likely to be jackpots. This evidence is consistent with
implications from the BH model.

4.3. Limits to arbitrage and the jackpot effect

In the BH model, which is populated solely by investors
with prospect theory utility functions, the high prices and
low expected returns for jackpot assets are not arbitrage
opportunities, because they are consistent with prefer-
ences in equilibrium. However, BH argue that in a more
realistic setting, where both expected utility and prospect
theory utility–based investors coexist, limits to arbitrage
could result in expected utility investors being unable or
unwilling to short-sell jackpot assets to exploit their low
returns. We, therefore, test the hypothesis that the jackpot
effect is stronger when limits to arbitrage are high, using
three measures of limits to arbitrage: size, institutional
ownership, and analyst coverage. Following CHS, for each
limits to arbitrage variable, we first sort stocks into two
groups, one with low and the other with high levels of the
variable every month. Then, within each group, we form
portfolios long the 20% of stocks with highest jackpot
probability and short the bottom 20%. Each of these
portfolios is value-weighted and skips a month between
portfolio formation and measuring returns. Table 5
8 The significant changes in institutional ownership in the four
quarters prior to the entry of the firm into the top DEATHP or JACKPOTP
decile is consistent with investors rebalancing based on exante estimates
of default and jackpot payoff probabilities.



Table 5
The jackpot effect and limits to arbitrage.

This table presents evidence on the effects of limits to arbitrage on the low average returns of jackpot stocks. We consider three measures of limits to
arbitrage: size, residual institutional ownership, and residual analyst coverage. We first classify stocks into two groups, based on the level of the limits to
arbitrage variable, and then examine returns of the portfolio long the highest jackpot probability quintile and short the lowest jackpot probability quintile
within each group. Both long and short portfolios are value-weighted. We present mean returns of this portfolio, Capital asset pricing model and four -factor
alphas, and mean relative size of each group. We also present the difference in mean JACKPOTP between the lowest and highest quintile of JACKPOTPwithin each
group. Small (big) stocks are smaller (larger) than the 30th (70th) NYSE size percentile. For institutional ownership and analyst coverage, we first measure the
residual of each variable in a regression on RELSIZE and time dummies. ‘Low’ institutional ownership or analyst coverage stocks are in the smallest tercile, while
‘High’ stocks are in the largest tercile of their respective residual. Size results are for 1972 to 2009, and institutional ownership and analyst coverage are for 1980
to 2009. All portfolios are value-weighted and skip a month between portfolio formation and measuring returns.

Size Institutional ownership Analyst coverage

Decile Small Big Low High Low High

Mean Returns �1.18 �0.05 �1.23 �0.33 �0.42 �0.37
t-Statistics �3.95 �0.19 �2.76 �0.86 �0.90 �0.85
CAPM alpha �1.44 �0.37 �1.70 �0.67 �0.86 �0.82
t-Statistics �5.32 �1.48 �4.21 �1.89 �2.59 �2.09
Four-factor Alphas �0.86 0.01 �1.19 �0.41 �0.54 �0.25
t-Statistics �2.96 0.05 �4.45 �1.59 �1.52 �0.79
Mean JACKPOTP spread 3.8% 0.6% 2.4% 3.1% 2.2% 2.4%
Mean RELSIZE �11.01 �6.83 �9.58 �9.61 �9.76 �9.22

9 One possible reason that results using analyst coverage are not as
strong as those for the other limits to arbitrage proxies is that small firms
often have zero analyst coverage, leading to low dispersion in this
measure among the set of firms in which we are interested.
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presents mean returns, CAPM, and four-factor alphas for
each of these long-short portfolios.

Our first variable is size. Small firms are defined as
firms smaller than the NYSE 30% cut off, and large firms
are larger than the NYSE 70% cut off. The jackpot effect is
clearly strong in small firms and not present at all in large
firms. The long-short portfolio has returns of �1.18%
(t-statistic¼�3.95) per month amongst small firms and
average returns of �0.05% (t-statistic¼�0.19) per month
amongst large firms. Similarly, four-factor alphas are at
�0.86% (t-statistic¼�2.96) per month for small firms and
at 0.01% (t-statistic¼0.05) per month for large firms.

Our next two variables, residual institutional ownership
and residual analyst coverage explicitly control for size, so
that results for these variables are not just restatements of
the results for size (because raw values of these variables are
highly correlated with size). To control for size, we follow
CHS and compute residuals from a regression of each of
these variables on RELSIZE and time dummies. We then sort
residuals into terciles and examine the long-short jackpot
portfolio within each tercile. Institutional ownership is the
fraction of shares owned by institutions in each stock from
the Thomson Reuters data set on Wharton Research Data
Services (WRDS) and is available quarterly. It is particularly
interesting to examine institutional ownership in the con-
text of the jackpot effect. First, both the results of the
preceding subsection and the evidence in Kumar (2009)
indicate that individuals and institutions have different
preferences for lottery-like stocks. Individuals display a
strong preference for such stocks, and institutions are
relatively averse to these securities. Second, institutional
ownership is a commonly used proxy for the supply of
lendable shares in the short-selling market (see, for exam-
ple, Nagel, 2005). Because arbitragers must short stocks with
high jackpot probabilities to take advantage of their abnor-
mally low returns, a low supply of shortable shares is an
important limit to arbitrage.

We find that the jackpot effect is much stronger in
firms with low residual institutional ownership, with
returns of the long-short portfolio of �1.23% (t-statistic¼
�2.76) per month versus �0.33% (t-statistic¼�0.86) for
the high residual institutional ownership subsample. Also,
four-factor alphas of �1.19% (t-statistic¼�4.45) for the
low institutional ownership subsample are much larger in
absolute magnitude than those of �0.41% (t-statistic¼
�1.59) for the high institutional ownership subsample.
Also, the size control works. Both the low and the high
residual institutional ownership samples have similar
average size and spread in jackpot probability between
the long-short portfolio in each institutional ownership
groups. This shows that stocks with similar jackpot prob-
ability have very different average returns, depending on
the level of limits to arbitrage.

We find broadly similar results, although with smaller
magnitudes, for residual analyst coverage. Analyst cover-
age is the natural log of one plus the number of analysts
that have issued an earnings forecast for the stock on the
Institutional Brokers' Estimate Systems (I/B/E/S) data set
within the last fiscal year. The jackpot effect is stronger for
firms with low residual analyst coverage, with four-factor
alphas equal to �0.54% per month (t-statistic¼�1.52) as
compared with �0.25% (t-statistic¼�0.79) for firms with
high residual analyst coverage. As with residual institu-
tional ownership, both low and high analyst coverage
firms have similar spreads in jackpot probabilities and
average size.9

To summarize, these results demonstrate that the jack-
pot effect is concentrated amongst stocks with high limits
to arbitrage. As a consequence, high limits to arbitrage
could help explain why these pricing effects persist in
the data.



Table 6
Firm characteristics.

This table presents average individual firm characteristics for portfolios sorted on predicted default probability according to the Campbell, Hilscher, and
Szilagyi (2008) model in Panel A and for portfolios sorted on out-of-sample predicted jackpot probability in Panel B. The variables are defined in Appendix A.
Realized jackpot is the average of the binary variable jackpot, that is one if log returns over the next 12 months are greater than 100%. The sample period is
1972–2009.

Decile

1 2 3 4 5 6 7 8 9 10

Panel A: Individual stock characteristics of DEATHP sorted portfolios
JACKPOTP 0.9% 0.9% 0.9% 1.0% 1.2% 1.3% 1.5% 1.8% 2.2% 3.4%
Realized jackpot 1.4% 1.4% 1.5% 1.5% 1.6% 1.6% 1.8% 2.0% 2.6% 3.9%
RET12 26.0% 21.6% 17.2% 13.2% 9.1% 4.7% 0.2% �6.0% �18.8% �44.9%
SIZE 5.42 5.75 5.58 5.36 5.12 4.84 4.46 4.06 3.57 2.93
BM 0.62 0.59 0.66 0.72 0.79 0.85 0.92 0.99 1.11 1.27
SALESGRTH 14.2% 17.1% 17.9% 17.9% 18.0% 17.7% 17.6% 17.2% 16.7% 14.5%
MLEV 5.9% 11.0% 15.1% 18.6% 21.6% 24.4% 27.1% 30.1% 33.9% 39.4%
SKEW 0.32 0.24 0.22 0.21 0.20 0.19 0.20 0.20 0.18 0.16

Panel B: Individual stock characteristics of JACKPOTP sorted portfolios
JACKPOTP 0.2% 0.4% 0.5% 0.7% 0.9% 1.1% 1.4% 1.8% 2.4% 4.6%
Realized jackpot 0.1% 0.3% 0.5% 0.8% 1.3% 1.8% 2.2% 2.7% 3.1% 3.6%
RET12 9.6% 9.9% 10.2% 10.2% 9.3% 7.4% 5.5% 2.5% �3.6% �16.5%
SIZE 8.10 6.89 6.19 5.62 5.14 4.73 4.35 3.98 3.56 2.94
BM 0.74 0.74 0.75 0.77 0.79 0.81 0.83 0.85 0.89 1.00
SALESGRTH 9.1% 11.1% 13.0% 14.5% 16.2% 17.7% 19.2% 21.1% 23.9% 27.1%
MLEV 25.9% 24.5% 23.1% 22.4% 22.2% 22.1% 21.8% 21.2% 20.9% 22.2%
SKEW �0.01 0.04 0.08 0.13 0.17 0.20 0.24 0.28 0.33 0.43
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4.4. Similarities and differences between high predicted
jackpot probability and high predicted distress firms

Table 6 presents characteristics of firms that are in
portfolios formed from sorts on DEATHP, the default
probability measure in CHS, and those formed from sorts
on JACKPOTP, our out-of-sample predicted jackpot mea-
sure. First, the fraction of firms in the top decile portfolio
that subsequently realize a jackpot return is slightly higher
(3.9%) for the highest DEATHP portfolio than for the high-
est JACKPOTP sorted one (3.6%). Second, as both DEATHP
and JACKPOTP increase, size and past 12-month returns
decrease and market-to-book ratios increase, although the
magnitudes are different, especially for past 12-month
returns. Third, DEATHP portfolios display no pattern in
sales growth, increasing leverage, and declining skewness
of daily log returns. JACKPOTP portfolios display very
different patterns for these variables, with increasing sales
growth, flat leverage, and increasing skewness. The skew-
ness reported in this table is the skewness in daily log
returns over the past three months, while the skewness
reported in Table 1 is the skewness of returns over the
next year. Also, although higher default risk portfolios
display declining average skewness, there is dispersion in
skewness within each portfolio. We show in Section 5.1.1
that the low returns of distressed stocks are present only
for distressed stocks with high past skewness.

Fig. 3 shows that DEATHP- and JACKPOTP-sorted port-
folios have similar patterns in factor loadings for MKT,
WML, and SMB, but then have sharply different patterns
for HML. Loadings on HML increase as DEATHP increases
but decrease as JACKPOTP increases. This is surprising as
both sets of portfolios have similar patterns in book-to-
market ratios. This difference in loadings is related to
differences in leverage. When we restrict stocks in the
highest default probability portfolios to have smaller
leverage, HML loadings decline (in untabulated results).

We return to these differences in characteristics in Section
5.1, where we use them to try to distinguish between distress
and jackpots. In the next subsection, we examine whether
the similarities described above result in significant correla-
tions between the probability of default and the probability
of jackpots, as well as whether returns on a trading strategy
that exploits the jackpot effect are correlated with those of a
strategy that exploits the default effect.

4.5. Relation between distress and jackpots

For jackpot returns to be a plausible explanation for the
low returns of high distress stocks, exante measures of
these two variables should be significantly correlated with
each other. In this subsection, we investigate the relation
between exante distress and jackpot probabilities. Table 7,
Panel A, presents pair-wise Spearman correlations between
predicted distress from the CHS model (DEATHP) and differ-
ent measures of the out-of-sample probability of a jackpot
return. JACKPOTP, the predicted probability of a jackpot
return from our baseline model, has a correlation of 41.8%
with the probability of distress. We also examine the alter-
nate prediction models from Section 3.4 that use different
variables and three additional models that use different cut
offs in defining jackpots. For jackpot predictions from alter-
nate models and other jackpot cut offs, pair-wise correlations
with distress are in the neighborhood of 40%. Thus, firms
with a high potential for death are also likely to have a high
potential for a jackpot payoff.

Next, we examine the correlation between returns of a
long-short strategy designed to exploit the CHS distress
effect and one designed to exploit the jackpot effect. The
distress strategy, DEATHPLS, is long stocks in the bottom
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Fig. 3. Carhart four-factor regression loadings for distress and jackpot strategies.
This figure plots loadings on the factors in the Carhart four-factor model for both the ten default probability (DEATHP) sorted portfolios and the ten jackpot
probability (JACKPOTP) sorted portfolios. The estimation period is from 1972 to 2009.
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DEATHP decile and short stocks in the top DEATHP decile,
while the jackpot strategy, JACKPOTLS, is long stocks in the
bottom decile of JACKPOTP and short stocks in the top decile
JACKPOTP. All portfolios are value-weighted. Going long the
safest stocks or those least likely to achieve a jackpot return
ensures positive average returns for both strategies.

In Panels B and C of Table 7, we examine the correlation
in the returns of the jackpot and distress strategies, and
compare their exposures to the four standard factors. The
first specification in Panels B and C reports how returns of
the two strategies co-vary with one another. The results
indicate a strong relation, with 32.5% of the time series
variation in the jackpot (distress) strategy return explained
by the distress (jackpot) strategy return. In both specifica-
tions, the alpha estimates decline sharply and become
statistically insignificant. For example, recall from Table 1
that the four-factor alpha of the distress strategy is 1.21%
per month. The alpha when jackpot returns are included in
the regression is 0.54% per month.10
10 Chava and Purnanandam (2010) find that the distress effect shown
in CHS is statistically significant only in the 1980s. In a longer sample,
with the same model for distress as CHS, we find the distress effect is
significant over other subsamples from 1972 to 2009, although it is
largest in the 1980s. The difference in our results is likely due to
differences in the models used to forecast default. Chava and
In the right-hand column of Panels B and C, we include
other risk factors (MKT, SMB, HML, andWML) in the analysis.
Controlling for these risks leaves both the distress and the
jackpot strategy with significant alphas, of 0.71%% and 0.81%
per month, respectively. That is, both distress and jackpot
strategies appear to be relatively low risk investments.

We do not interpret these regressions as a formal asset
pricing model. Instead, these results indicate that a sig-
nificant relation exists between distress and jackpot stra-
tegies. The returns of portfolios sorted on the probability
of jackpot returns are correlated with those sorted on the
probability of distress. Thus, a high probability of a jackpot
return is a plausible explanation for the low average
returns of stocks with high default probability although,
as the factor loadings in Fig. 3 indicate, some differences
exist between the strategies' risk profile. In Section 5, we
use these differences in an attempt to disentangle the
relation between jackpots and distress further.
(footnote continued)
Purnanandam (2010) use the same model as Shumway (2001), while CHS
modify that model and show that their modifications improve forecasting
power for defaults. For example, for their definition of profitability, CHS
use geometrically declining weights over the past four quarters of net
income/market total assets, while Chava and Purnanandam (2010) using
annual net income/book total assets.



Table 7
The relation between returns of distress and jackpot strategies.

Panel A presents Spearman correlations between predicted jackpot
probability (JACKPOTP) and predicted default probability (DEATHP). JACK-
POTP is from the different models in Table 3, with different predictor
variables (models 2 to 4) and different cut-offs used in defining jackpot
(arithmetic returns of 50%, 75% and 100% over the subsequent year).
Panel B presents time-series regressions of returns of the ‘distress
strategy’ on different portfolios. The distress strategy, DEATHLS, is long
the bottom 10% of stocks (lowest default probability) and short the top
10% of stocks (highest default probability) according to the default
probability model in Campbell, Hilscher, and Szilagyi (2008). Specifica-
tion 1 regresses the distress strategy on JACKPOTLS. JACKPOTLS is a
portfolio of stocks that is long the decile least likely to achieve jackpot
returns and short the decile most likely to achieve jackpot returns,
according to the baseline out-of-sample jackpot prediction model.
Specification 2 uses the Four -actor model as well as returns to the
jackpot strategy as explanatory variables. Panel B presents time-series
regressions of returns of JACKPOTLS on different portfolios. The first
specification regress JACKPOTLS on DEATHLS, and the next specification
adds in the four factors. The sample period is 1972 to 2009.All portfolios
are value-weighted and skip a month between portfolio formation and
measuring returns.

Variable Correlation

Panel A: Spearman correlations with DEATHP
JACKPOTP 41.80%
JACKPOTP Model 2 39.54%
JACKPOTP Model 3 39.26%
JACKPOTP50 45.43%
JACKPOTP75 45.26%
JACKPOTP100 45.64%

(1) (2)

Coefficient t-Value Coefficient t-Value

Panel B: Explaining the returns of the distress strategy
Intercept 0.54 1.47 0.71 2.69
MKTRF �0.35 �5.06
SMB �0.57 �3.45
HML �0.38 �2.98
WML 0.79 6.68
JACKPOTLS 0.56 5.18 0.34 5.37
R2 32.54% 66.18%

Panel C: Explaining the returns of the jackpot strategy
Intercept 0.40 1.19 0.81 2.86
MKTRF �0.03 �0.40
SMB �1.14 �7.00
HML 0.60 3.96
WML �0.07 �0.73
DEATHPLS 0.58 10.01 0.36 4.66
R2 32.54% 65.21%

(footnote continued)
low default probabilities, the jackpot strategy provides significant returns
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5. Relation between distress and jackpots effects
on expected returns

This section investigates the relation between the
effects of distress and jackpots on expected returns.
In Section 5.1, we use firm characteristics, motivated by
economic arguments, to construct subsamples of firms
that have similar probabilities of distress but different
probabilities of jackpots.11 These allow us to investigate
11 We attempt to create a subsample of firms with low default
probabilities and varying jackpot probabilities to investigate whether
the jackpot effect is concentrated in firms with high default probabilities.
Specifically, in a previous version of the paper we report that in the
subsample of firms with zero leverage, which might be associated with
whether the effect of high default risk on returns is present
when jackpots are relatively unlikely. In Section 5.2, we use
Fama and MacBeth regressions to test whether one effect
subsumes the other.
5.1. Interesting subsamples

We use the following characteristics: past return skew-
ness, sales growth, and market-to-book ratio to construct
subsamples in which although the level of default risk is
high, the probability of jackpots is low. We have strong
prior beliefs and empirical evidence (in Section 3) that
these characteristics predict jackpot returns (but not
defaults). For ease of comparison, all results in this section
are for the sample in which both probabilities of distress
and probabilities of jackpot returns can be computed.
5.1.1. Test 1: skewness
We first sort firms in the highest CHS default prob-

ability quintile based on the skewness of their daily log
returns over the past three months. Portfolios are value-
weighted, and we skip a month between portfolio forma-
tion and measuring returns. The difference in default
probabilities between low-skewness and high-skewness
firms is modest (2.28% versus 2.40%), with a relatively
larger difference in jackpot probabilities across the low-
skew and high-skew subsamples (1.20% versus 1.48%), as
expected. Table 8 shows that amongst firms in the highest
quintile of default probability, firms with skewness less
than the 30th percentile for the full sample do not have
abnormally low four-factor alphas (�0.21% per month).
Instead, the low returns of high default probability stocks
are concentrated in the portfolio of firms in the top 30% of
skewness, with a four-factor alpha of �0.75% per month.
The difference in subsequent returns between these two
portfolios is statistically significant, with a four-factor
alpha of 0.54% per month (and a t-statistic of 2.21) for
the portfolio that is long the low skewness firms and short
the high skewness firms amongst the subsample of firms
with high default probability.
5.1.2. Test 2: sales growth and market-to-book ratio
We sort firms in the highest CHS predicted default

probability quintile into traditional distressed firms and
speculative firms. Traditional distressed firms are defined
as those firms that have low sales growth and low market-
to-book ratios (in the bottom 30% of the full sample for
both), and speculative firms are those with high market-
to-book ratios and high sales growth (in the top 30% of the
full sample for both). This procedure allows us to create
(a four-factor alpha of 0.58% per month after skipping a month and 1.3%
without skipping a month). Thus, the jackpot effect is present even for
firms with no debt. This is not conclusive evidence, however, because
firms with no leverage could have significant probabilities of economic
distress. And, as stated previously, attempts to use double-sorting on
jackpot and distress probabilities resulted in samples that were too small
to draw reliable inferences.



Table 8
Distinguishing between the effects of distress and jackpot on expected returns.

This table presents results for firms in the top quintile portfolio of DEATHP, the predicted probability of default. We sort firms in the top predicted distress
quintile based on their skewness in daily log returns over the past three months into two portfolios, high (greater than the 70th percentile) and low
(smaller than the 30th percentile). We also sort firms into distress (the bottom 30% of all firms in terms of sales growth and bottom 30% in market-to-book
or with negative book equity) and speculative (the top 30% of all firms in terms of sales growth and top 30% market-to-book) portfolios. We then compute
value-weighted returns and four factor alphas for each portfolio, skipping a month between portfolio formation and measuring returns. We also report
annualized mean DEATHP and mean JACKPOTP, the predicted probability of jackpots for each portfolio.

Skewness Sales growth and Market to Book

Low High Low-High Distress Speculative Distress–speculative

Mean return 0.53% 0.06% 0.47% 0.87% �0.9% 1.77%
Four factor alpha �0.21% �0.75% 0.54% �0.14% �1.70% 1.55%
t-Value �1.18 �3.3 2.21 �0.55 �4.81 �3.68
Mean DEATHP 2.28% 2.40% 2.64% 2.28%
Mean JACKPOTP 1.20% 1.48% 1.09% 1.97%
Number of observations 277 223 169 53
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sets of portfolios with similar distress probabilities but
different jackpot probabilities.

Panel B of Table 8 presents results for value-weighted
portfolios of both traditional distressed firms and spec-
ulative firms. Within the quintile of the highest distress
probability, on average, 169 stocks are traditional dis-
tressed firms and 53 stocks are categorized as speculative.
The average annualized default probability for traditional
distress stocks (2.64%) is, if anything, higher than that for
speculative distress stocks (2.28%). However, traditional
distressed firms do not earn abnormally low returns in
subsequent periods and have a four-factor alpha of �0.14%
that is not significantly different from zero. In sharp
contrast, the speculative firms in the highest CHS default
probability quintile have a four-factor alpha of �1.70% per
month with a t-value of �4.81. Even though the average
distress probability is similar between these two groups,
the average probability of a jackpot return is much higher
for the speculative stocks at 1.97% as compared with 1.09%
for traditional distress stocks. Thus, the results in Panel B
of Table 8 show that, among stocks with high default
probability, traditional distressed firms do not go on to
earn abnormally low returns, while speculative firms do.
Both sets of firms have similar default probabilities, but
speculative firms have twice the jackpot probability of
traditional distressed firms.12

This test is reminiscent of previous results in the litera-
ture on the effect of distress risk on the cross section of stock
returns. Dichev (1998) shows that stocks classified as high
default risk according to the Ohlson (1980) model have low
average returns. Griffin and Lemmon (2002) show that these
low returns are concentrated in stocks with high market-to-
book ratios. They argue that such stocks are overvalued. We
show that the low returns that CHS report are concentrated
in speculative stocks as described above and not in tradi-
tional distressed stocks. We also show that such speculative
12 The sorts on skewness, market-to-book, and sales growth do not
inadvertently result in sorts on size and thereby replicate the results on
limits-to-arbitrage presented earlier. The average size decile for firms
high in DEATHP, but which have low and high skewness, are virtually
identical (6.67 and 6.75), as are those for speculative and distressed
portfolios (6.37 and 6.51) with high DEATHP.
stocks have much larger probabilities of jackpot returns than
traditional distressed stocks, providing an economic ratio-
nale for their high valuations. Overall, our results are
consistent with the hypothesis that, holding the effect of
distress risk constant in the sample, returns to stocks are
significantly lower in stocks that have high jackpot prob-
abilities.13 The results suggest that, on average, it is not
merely a high default probability that leads to investors
bidding up the price of a security. The payoff distribution
must have a significant probability of a relatively large
positive outcome as well to become overpriced.
5.2. Fama and MacBeth regressions

Fama and MacBeth regressions allow us to test whether
default or jackpot probabilities are important in predicting
returns while controlling simultaneously for other variables
(such as past volatility) that have been shown to affect
expected return and are correlated with both these measures.
For our Fama and MacBeth regressions, we standardize each
explanatory variable to have a mean of zero and a standard
deviation of 1 in every cross section, by subtracting the
variable's cross-sectional mean and dividing by its cross-
sectional standard deviation. This allows coefficients to be
easily interpretable. Each coefficient measures the effect on
returns of a 1 standard deviation shock to the explanatory
variable. We also lag each explanatory variable by one month.
Skipping a month between measuring the explanatory vari-
able and returns allows us to control for microstructure-
related effects such as bid-ask bounce.

In Table 9, Specification 1, we include the following
variables that have been shown to have an effect on returns
in the cross section: book-to-market (BM), lagged past 12
month return (Ret(t�12, t�2)), market capitalization (SIZE),
13 An earlier version of this paper also reported results for indepen-
dent portfolio sorts on distress and jackpot probabilities. We find broadly
similar results with these portfolios as those with Fama and MacBeth
regressions and do not report them in this version for brevity. Also,
because the extreme high distress and low jackpot probability, as well as
the low distress and high jackpot probability, portfolios are sparsely
populated, portfolio results are less reliable than the Fama and MacBeth
results we report.
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and log stock return volatility (LOGSTDEV). All variables are
observed at the end of the previous month. All variables
carry significant coefficients with the expected sign. Speci-
fically, coefficients on BM (positive), Ret(t�12, t�2) (posi-
tive), and size (negative) are consistent with stylized facts
concerning value, momentum, and size effects. In Specifica-
tion 2, we add predicted default probability, DEATHP, to
these firm characteristics. The coefficient on DEATHP is
�0.42% and is statistically significant. In Specification 3,
we drop default probability and add jackpot probability,
JACKPOTP. The coefficient on JACKPOTP at �0.37% per
month is very close to that of DEATHP and is statistically
significant. When both JACKPOTP and DEATHP are intro-
duced into the Fama and MacBeth regression in Specifica-
tion 4, the sign and magnitude of the coefficients on
JACKPOTP and DEATHP are very similar to previous specifi-
cations. Also, volatility is not significant in the final speci-
fication. These results suggest that the results in Ang,
Hodrick, Xing, and Zhang (2008), which show that idiosyn-
cratic volatility is negatively related to future returns, is
linked to the possibility of death and jackpot returns. These
results are consistent with Boyer, Mitton, and Vorkink
(2010) and Bali, Cakici, and Whitelaw (2011), who find that
a potential for skewness or lottery-like payoffs explains the
idiosyncratic volatility effect.

In unreported tests, we find that these results are
robust to alternate transformations of variables. For example,
using log default or jackpot probabilities, not standardizing
variables, or not logging volatility produce similar results.
Overall, this section shows that controlling for distress does
not drive out the effect of jackpots on expected returns, and
controlling for a high probability of a jackpot return does
not drive out the effect of distress on expected returns.
If anything, the Fama and MacBeth regressions suggest that
both distress and jackpot probability have an impact on
expected returns.14
6. Robustness tests

In Table 10, we examine the robustness of our results
with the jackpot trading strategy. We report the jackpot
strategy's performance with different specifications to
14 The Fama and MacBeth cross-sectional regression results should
be interpreted with some caution. Given the high correlation between
the probability of distress and the probability of a jackpot return, which
we observe in our sample, collinearity could affect these results. Related,
measurement error in the predicted probabilities of distress and jackpot
returns could make it difficult to distinguish between the two variables in
Fama and MacBeth regressions. We investigate this possibility by per-
forming a simulation exercise using Fama and MacBeth regressions with
correlated independent variables in Appendix C. In our simulation,
expected returns depend only on the probability of earning a jackpot
return, but the probability of jackpots and death are correlated.
In addition, the probabilities of jackpots and death are measured with
error. When observed values of the probability of death and jackpot
returns are used as explanatory variables in Fama and MacBeth regres-
sions, we find that both are statistically significant, across a range of
plausible values for measurement error and true correlation. These
results suggest that, given the observed correlation between death and
jackpot returns, the results of Fama and MacBeth regressions might not
allow us to determine whether one variable is more important than
another in driving the effect in returns.



J. Conrad et al. / Journal of Financial Economics 113 (2014) 455–475 471
forecast jackpot returns in each decade separately and
with different cutoffs in the definition of a jackpot return.
All portfolios formed continue to be value-weighted. For
brevity, we report the alpha only from the Carhart (1997)
four-factor model in this table.

In Panel A, we use the alternate specifications discussed in
Section 3.4 to forecast the probability of a jackpot return.
Specifically, in Model 2, we introduce nonlinearity in size by
adding two indicator variables for size categories. We also add
a dummy variable for Nasdaq firms. With this specification,
we first reestimate the out-of-sample jackpot probability and
then reconstruct the jackpot strategy. We skip a month before
portfolio formation to avoid a short-term return reversal
effect. The one minus ten portfolio return has an alpha of
0.87% per month with a t-statistic of 3.58. Model 3 includes
exactly the same set of variables as in the CHS distress
forecasting specification. Both Model 2 and Model 3 generate
very similar jackpot strategy returns as our baseline model.
There is a sharp drop in the four-factor alpha in Decile 10 for
both models. Overall, regardless of the specification used, the
jackpot strategy returns remain statistically and economically
significant.

In Panel B of Table 10, we report results from our baseline
model for different sub-periods. We divide our full sample
into four sub-samples: 1972 to 1979, 1980 to 1989, 1990 to
1999, and 2000 to 2009. The jackpot strategy has the highest
return in the 1980–1990 sub-period, with a four-factor alpha
of 1.67%. Though smaller in magnitude, in other sub-samples,
the jackpot strategy return remains strongly positive and
significant at conventional levels in all sub-samples with the
exception of 1990–1999 subsample, where the p-value on the
estimated alpha of 0.89% per month is 0.08.

Next we examine whether the low average returns of
stocks with a high probability of earning a jackpot return
depend on how jackpot returns are defined. In our baseline
model, jackpot returns are defined as log returns greater
than 100% over the next 12-month period. In Panel C of
Table 10, we use the same baseline model to forecast
jackpots out-of-sample, with a jackpot return defined as an
arithmetic return above 50%, 75%, or 100% over the next 12-
month period. The results are very similar to Panel A in
Table 3, where a jackpot return is defined as log return above
100%. The jackpot strategy alpha increases slightly when the
cutoff return to be considered a jackpot increases. All
strategies are highly significant.

Summarizing, these results indicate that stocks with a high
predicted probability of a jackpot return also have low
subsequent average returns. This result is robust to different
definitions of, and models for predicting, jackpot returns.

7. Conclusion

The CHS result that firms with high default risk earn
low returns is surprising because of the direction of the
effect that risk has on average returns. We show that a
large overlap exists between stocks classified as high
default risk by the CHS model and those that are likely
to produce extremely high returns (over 100%) over the
next year. Thus, we show that these stocks possess a
feature that investors desire: lottery-like payoffs that lead
to high valuations and low expected returns. This is
consistent with the model in Barberis and Huang (2008),
in which investors with prospect theory–based utility
functions display a strong preference for such stocks,
resulting in low average returns in equilibrium.

We build a model to predict which stocks have lottery-
like returns (jackpot payoffs), using a logit model similar to
the model in CHS, except that our dependent variable is
one if returns over the next year are over 100%. We
estimate this model on an expanding out-of-sample win-
dow and find that stocks with a high predicted probability
of jackpot returns do have low average subsequent returns.
We show that stocks with high default and jackpot
probabilities have relatively low institutional ownership,
consistent with the hypothesis that these are largely
owned by retail investors who are more likely to display
a preference for total skewness. We also find that low
average returns are concentrated in stocks with high limits
to arbitrage, consistent with the hypothesis that these
limits make it difficult for investors with expected utility
preferences to arbitrage these low returns away. We also
find that the predicted probability of a jackpot return is
highly correlated with the probability of default from the
model of CHS. Therefore, a high probability of a jackpot
return is a plausible explanation for the results in CHS.

We run a set of tests to examine the relation between
the effects of jackpot payoffs and default on expected
stocks' returns. The returns of jackpot and distress strategy
returns are significantly correlated with each other. We
use different subsamples to attempt to disentangle these
effects. First, we find that amongst stocks with high default
probability, low average returns are present only in stocks
in the top 30% of daily return skewness in the past three
months and not in those with the lowest 30% of skewness.
Second, we show that the low returns that CHS report are
concentrated in speculative stocks with high sales growth
and high market-to-book ratios and not in traditional
distressed stocks with low sales growth and low market-
to-book ratios. These results are consistent with the
interpretation that it is skewness that leads investors to
hold overpriced distressed stocks. We also use Fama and
MacBeth regressions to control for variation in both dis-
tress and jackpot probabilities, as well as other variables
such as volatility. We find evidence that default probabil-
ities do not drive out the significance of jackpot probabil-
ities in explaining subsequent returns. However, jackpot
probabilities do not completely subsume the predictive
power of default probabilities for subsequent returns.

Overall, our results suggest that a high probability of
jackpot payoffs is responsible for at least a portion of the
low average returns of stocks with high default probability,
with investors bidding up the price of securities with high
default probabilities if the securities offer a lottery-like
payoff structure. In addition, the magnitude of the average
abnormal return in jackpot securities varies with factors
that are associated with the costs of arbitrage in these
securities.
Appendix A. Definitions of key variables

Following are definitions of the key variables.



Table 10
Alternate specifications and sample periods for portfolios formed from sorts on predicted jackpot probability.

This table presents four-factor alphas of portfolios formed from alternate specifications (Panel A), time periods (Panel B), and different definitions of
jackpots (Panel C). Panel A reports four-factor alphas of portfolios formed from out-of-sample predicted jackpot probability based on the two alternate
models with different predictor variables defined in Table 3. Panel B examines alphas from our baseline model over different subsamples. Panel C reports
alphas of portfolios formed based on out-of-sample predictions of jackpot probability with our baseline variables, with different definitions of jackpots
(450%, 75%, and 100% arithmetic returns over the next year). The sample period is 1972 to 2009.

Panel A: Different models to forecast JACKPOT

1 2 3 4 5 6 7 8 9 10 1–10

Model 2 0.02 �0.02 0.12 0.24 �0.02 0.45 �0.13 �0.19 �0.57 �0.85 0.87
t-Statistics 0.23 �0.27 1.51 2.07 �0.15 2.96 �0.96 �1.16 �3.26 �4.25 3.58
Model 3 0.07 �0.02 0.10 �0.14 �0.01 0.10 �0.02 �0.14 �0.05 �0.62 0.68
t-Statistics 1.69 �0.39 1.51 �1.74 �0.07 0.75 �0.16 �0.88 �0.27 �2.76 2.83

Panel B: Sub-samples

1 2 3 4 5 6 7 8 9 10 1–10

1972–1979 0.01 0.14 0.21 0.01 0.12 0.07 �0.15 �0.35 �0.32 �1.11 1.12
t-Statistics 0.09 1.38 1.57 0.06 0.70 0.40 �0.64 �1.53 �1.05 �4.60 4.38
1980–1989 0.06 0.10 0.10 0.10 0.07 0.05 �0.23 �0.30 �1.13 �1.61 1.67
t-Statistics 1.16 1.42 1.05 0.77 0.72 0.31 �1.79 �2.01 �6.72 �5.71 5.60
1990–1999 0.06 0.05 0.08 0.02 0.01 0.01 �0.25 �0.06 0.06 �0.83 0.89
t-Statistics 1.12 0.53 0.60 0.11 0.08 0.06 �1.17 �0.21 0.15 �1.82 1.82
2000–2009 0.09 0.13 0.08 0.17 �0.14 0.06 0.15 �0.45 �0.65 �1.14 1.23
t-Statistics 0.97 0.93 0.46 0.95 �0.78 0.23 0.50 �1.38 �1.87 �2.52 2.64

Panel C: Different definitions of JACKPOT

1 2 3 4 5 6 7 8 9 10 1–10

JACKPOT as 50% 0.05 0.15 0.13 0.05 0.03 �0.08 �0.19 �0.39 �0.67 �1.07 1.12
t-Statistics 1.45 2.65 1.63 0.53 0.33 �0.76 �1.82 �3.31 �4.42 �5.02 5.05
JACKPOT as 75% 0.04 0.17 0.05 0.05 0.12 �0.06 �0.17 �0.30 �0.69 �1.03 1.08
t-Statistics 1.27 2.55 0.73 0.65 1.12 �0.55 �1.38 �1.93 �4.61 �4.68 4.63
JACKPOT as 100% 0.05 0.10 0.18 0.00 0.01 0.09 �0.12 �0.36 �0.62 �1.02 1.07
t-Statistics 1.33 1.65 2.71 0.02 0.11 0.72 �0.91 �2.17 �3.60 �4.45 4.40
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Jackpot is one if firm has continuously compounded
returns 4100% over months tþ1 to tþ12 and zero
otherwise. For firms that delist within the next 12
months, we use returns over as many months as are
available, adjusted for any delisting returns on CRSP.
JACKPOTP is predicted probability of jackpot return
from out-of-sample regressions (specification as in
Table 3, baseline model)
DEATHP is predicted probability of distress from the
main model in Campbell, Hilscher, and Szilagyi (2008)
(Table 4, 12-month lag, p. 2913). This is in-sample and
computed based on quarterly Compustat data.
The next set of variables are used to predict jackpots in
our main specification.

SKEW is skewness of log daily returns over the last
three months, centered around zero.
RET12 is log return over the past year.
SALEG is sales growth in year y Ln (Salesy/Salesy�1).
AGE is time (in years) since appearance on CRSP.
TANG is gross PPE/total assets.
TURN is detrended stock turnover. Computed as in
Chen, Hong, and Stein (2001), as average past six-month
turnover minus average past 18-month turnover.
STDEV is standard deviation of daily returns over the
past three months, centered around zero.
SIZE is log (market capitalization in thousands).
The following variables are used to predict jackpots in
Model 3 and are defined in a similar manner as CHS (except
we use annual instead of quarterly Compustat data).

ROMA is return on market assets¼net profits/(market
equityþtotal liabilities).
MLEV is (short-term debtþ long-term debt)/(market
equityþshort term debtþ long term debt).
RELSIZE is log (firm market cap/market cap of S&P 500).
CASH is cash/(market capþbook value of total liabilities).
PRC15 is log of stock price, truncated at $15.
EXRAVG is excess returns of the stock over the S&P 500
over the last 12 months with geometrically declining
weights.
MB is market-to-book. Book value of equity is com-
puted as in CHS, based on the procedure in Cohen, Polk,
and Vuolteenaho (2003).
All accounting data are lagged by six months, to ensure
they are known by investors.



J. Conrad et al. / Journal of Financial Economics 113 (2014) 455–475 473
Appendix B. The accuracy ratio

The accuracy ratio is used to assess the predictive
ability of a model that ranks elements. It has been used
extensively in the credit risk literature in assessing the
performance of credit rating models (e.g., Vassalou and
Xing, 2004).

Suppose that a model ranks firms according to a
measure of predicted jackpot probability. There are N
firms in total in our sample, and M of those realize a
jackpot return in the next one year. Let θ¼M/N be the
percentage of firms that realize a jackpot return. For every
integer λ between zero and one hundred, Kλ is the number
of firms that realize a jackpot return within λ% of firms
with the highest jackpot probability. Kλ cannot be more
than M. f(λ) is defined as Kλ/M. Then f(λ) takes values
between zero and one, and it is an increasing function of λ.
Moreover, f(0)¼0 and f(100)¼0.

Suppose we had the perfect measure of future jackpot
probability, and we were ranking stocks according to that.
Our model would then have been able to perfectly predict
jackpot for each integer λ, and f(λ) would be given by

f ðλÞ ¼ λ

θ
for λoθ ð2Þ

and

f ðλÞ ¼ 1 for λZθ ð3Þ

The graph of average f(λ) over all months in the sample
for this perfect measure is shown as the kinked line in the
right-hand-side panel of Fig. A1. At the other extreme,
suppose we had zero information about future jackpot
probability, and we were ranking the stocks randomly.
If we did that a large number of times, f(λ) would be equal
to λ. The average f(λ) would correspond to the 45 degree
line in the graphs of Fig. A1.

We measure the amount of information in a model by
how far the graph of the average f(λ) for a given model lies
above the 45 degree line. Specifically, we measure it by the
area between the 45-degree line and the graph of average
f(λ). This is depicted as the area A in Fig. A1. The accuracy
ratio of a model is then defined as the ratio between the
area associated with that model's average f(λ) function and
the one associated with the perfect model's average f(λ)
function (area B in Fig. A1). Under this definition, the
Fig. A1. Illustrating th
perfect model has accuracy ratio of one and the zero-
information model has an accuracy ratio of zero.
Appendix C. Correlated independent variables in Fama
and MacBeth regressions

We simulate the cross section of returns to understand
the impact of adding correlated variables into Fama and
Macbeth specifications. We consider two correlated vari-
ables: the probability of default (DEATHP) and the prob-
ability of jackpot returns (JACKPOTP). Expected returns are
related to JACKPOTP but not to DEATHP. Both DEATHP and
JACKPOTP are measured with error, and these observed
values are used as explanatory variables in Fama and
Macbeth regressions. We present results for calibrations
with different degrees of correlation between DEATHP and
JACKPOTP and different degrees of measurement error.

The specification is as follows
1.
e ac
True DEATHP and JACKPOTP are bivariate normal with
unit variance and correlation (or covariance) ρ:

DEATHPi;t

JACKPOTPi;t

 !
� N

1 ρ

ρ 1

 !
2.
 These are both observed with error:dDEATHPi;t ¼DEATHPi;tþ ui;t

anddJACKPOTP ¼ JACKPOTPi;tþ vi;t

where ui;t �Nð0; s2uÞ and vi;t �Nð0;s2v Þ are measurement
errors in DEATHP and JACKPOTP, respectively.
3.
 The data generating process for returns is

ri;t ¼ rm;tþλt JACKPOTPi;tþ εi;t ;

and rm;t � Nð0:01; 0:057735Þ is the monthly return on
the average stock, with standard deviation chosen to be
20% per year.
εi;t � Nð0; s2ivol;i;tÞ is an idiosyncratic shock, whose
log variance is distributed normally across firms, with
parameters calibrated to data (mean¼�4.17 and
variance¼1.38).
λt � Nðμλ; s2λ Þ is a time-varying premium for JACKPOTP.
curacy ratio.



Table A1
The impact of correlated variables on Fama and Macbeth regressions.

This table presents simulations of Fama and Macbeth regressions with correlated independent variables measured with error. The simulations are
described in Appendix C and are run for different values for measurement error in death (su¼0.1, 0.3, 0.5, and 0.7) and the true correlation between jackpot
probability and default probability (ρ¼0.5, 0.6, 0.7, and 0.8). Panel A reports average coefficients across five hundred simulations for a regression with both
observed jackpot probability (Jackpothat) and observed default probability (Deathhat). Panel B has only Jackpothat and Panel C has only Deathhat. All three
panels include an intercept. Panel D reports measurement error in JACKPOTP that is used in each simulation. This is backed out from the measurement
error in DEATHP and true correlation so that the observed correlation between Deathhat and Jackpothat is 0.4.

Intercept Jackpothat Deathhat Intercept Jackpothat Deathhat Intercept Jackpothat Deathhat Intercept Jackpothat Deathhat

su¼0.1 su¼0.3 su¼0.5 su¼0.7

Panel A: Specification with intercept, Jackpothat and deathhat
ρ¼0.5
Coefficient 0.99% �0.57% �0.17% 1.00% �0.61% �0.14% 1.00% �0.68% �0.09% 1.00% �0.77% �0.02%
t-Statistics 3.82 �5.44 �5.03 3.86 �5.48 �4.84 3.86 �5.56 �4.21 3.85 �5.50 �1.27
ρ¼0.6
Coefficient 1.00% �0.40% �0.31% 1.00% �0.44% �0.28% 1.02% �0.51% �0.23% 1.00% �0.58% 0.16%
t-Statistics 3.85 �5.36 �5.31 3.86 �5.42 �5.35 3.92 �5.50 �5.29 3.86 �5.41 �4.93
ρ¼0.7
Coefficient 1.00% �0.28% �0.45% 1.00% �0.31% �0.41% 1.00% �0.37% �0.35% 1.02% �0.45% �0.28%
t-Statistics 3.85 �5.34 �5.48 3.84 �5.42 �5.46 3.83 �5.37 �5.35 3.92 �5.48 �5.37
ρ¼0.8
Coefficient 1.02% �0.18% �0.57% 1.03% �0.20% �0.53% 0.98% �0.26% �0.46% 1.00% �0.33% �0.39%
t-Statistics 3.92 �5.16 �5.53 3.95 �5.14 �5.45 3.80 �5.29 �5.41 3.84 �5.43 �5.45

Panel B: Specification with intercept and Jackpothat
ρ¼0.5
Coefficient 0.99% �0.63% 1.00% �0.66% 1.00% �0.72% 1.00% �0.78%
t-Statistics 3.82 �5.46 3.85 �5.49 3.86 �5.57 3.85 �5.50
ρ¼0.6
Coefficient 1.00% �0.53% 1.00% �0.55% 1.02% �0.60% 1.00% �0.64%
t-Statistics 3.85 �5.41 3.86 �5.46 3.92 �5.52 3.85 �5.43
ρ¼0.7
Coefficient 1.00% �0.46% 1.00% �0.48% 1.00% �0.50% 1.02% �0.56%
t-Statistics 3.85 �5.48 3.84 �5.51 3.83 �5.43 3.92 �5.52
ρ¼0.8
Coefficient 1.02% �0.41% 1.03% �0.41% 0.98% �0.44% 1.00% �0.49%
t-Statistics 3.92 �5.52 3.95 �5.42 3.80 �5.43 3.84 �5.51

Panel C: Specification with intercept and deathhat
ρ¼0.5
Coefficient 0.99% �0.39% 1.00% �0.38% 1.00% �0.36% 0.99% �0.35%
t-Statistics 3.82 �5.42 3.86 �5.43 3.86 �5.49 3.86 �5.40
ρ¼0.6
Coefficient 1.00% �0.47% 1.00% �0.46% 1.02% �0.43% 1.00% �0.39%
t-Statistics 3.92 �5.49 3.86 �5.46 3.85 �5.40 3.85 �5.38
ρ¼0.7
Coefficient 1.00% �0.56% 1.00% �0.54% 1.00% �0.49% 1.02% �0.46%
t-Statistics 3.83 �5.42 3.84 �5.51 3.85 �5.51 3.92 �5.50
ρ¼0.8
Coefficient 1.02% �0.64% 1.03% �0.61% 0.98% �0.57% 1.00% �0.52%
t-Statistics 3.80 �5.45 3.95 �5.47 3.92 �5.55 3.84 �5.51

Panel D: Measurement error for Jackpot (sv)

ρ su¼0.1 su¼0.3 su¼0.5 su¼0.7
0.5 0.74 0.66 0.50 0.22
0.6 1.11 1.10 0.89 0.71
0.7 1.43 1.35 1.20 1.03
0.8 1.72 1.63 1.48 1.30
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We use this data generating process to simulate a
panel of returns with two thousand firms and T¼400
months. For each panel we run Fama and Macbeth
regressions of returns on observed DEATHP and observed
JACKPOTP. We report statistics over five hundred such
simulations.

Although we have several free parameters, these are
restricted by observed data.
1.
 We tune μλ, s2λ such that we match mean coefficients
and t-statistics observed in the data in Fama and
MacBeth regressions of returns on JACKPOTP (approxi-
mately �0.5 for the mean and �5 for the t-statistic).
2.
 Because we can observe rm, we use the average mea-
sured variance of market returns. It is comforting that
the t-statistics for the intercept in our calibration are
reasonably close to the data.
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3.
 We have three free parameters left: ρ, the true correla-
tion between DEATHP and JACKPOTP, and su andsv, the
standard deviations of measurement errors in DEATHP
and JACKPOTP, respectively. However, the measured
correlation between DEATHP and JACKPOTP ties down
one degree of freedom for these three. Therefore, we
present results for a range of true ρ and true su and
back out the value of sv that gives a measured correla-
tion between DEATHP and JACKPOTP of 0.4. Also, given
the lower R2s in predicting jackpot returns as compared
with those in predicting default in the data, the
measurement error in JACKPOTP likely is greater than
that in DEATHP.

Table A1 reports results of these simulations for su
taking on values 0.1, 0.3, 0.5, and 0.7 and ρ taking values
0.5, 0.6, 0.7, and 0.8. We report three specifications:
returns on both DEATHP and JACKPOTP, on only DEATHP,
and on only JACKPOTP. All specifications include a constant
as well.

The table shows that parameter values exist for which a
high correlation between DEATHP and JACKPOTP, coupled
with measurement error, results in significant t-statistics
for both variables in Fama and MacBeth regressions. In
many specifications (particularly those with higher mea-
surement error for JACKPOTP than for DEATHP), the mag-
nitudes of the coefficients for both DEATHP and JACKPOTP
are roughly similar. Thus, Fama and MacBeth regressions
might not have sufficient power to distinguish between
the effects of jackpot probability and default probability on
expected returns.
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