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Abstract

Most existing portfolio choice models ignore the prevalent periodic market closure and the fact

that market volatility is significantly higher during trading periods. We find that market closure

and the volatility difference across trading and nontrading periods significantly change optimal

trading strategies. In addition, we numerically demonstrate that transaction costs can have a first

order effect on liquidity premia that is largely comparable to empirical findings. Moreover, this

effect on liquidity premia increases in the volatility difference, which is supported by our empirical

analysis.
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Market closures during nights, weekends, and holidays are implemented in almost all financial

markets. An extensive literature on stock return dynamics across trading and nontrading periods

finds that, while expected returns do not vary significantly across these periods, return volatility

is much higher during trading periods (e.g., French and Roll (1986), Stoll and Whaley (1990),

Tsiakas (2008), see Figure 2). For example, French and Roll (1986) and Stoll and Whaley (1990)

find that return volatility during trading periods is more than four times the volatility during

non-trading periods on a per-hour basis.1 However, most of the existing portfolio selection models

assume that market is continuously open and return volatilities are the same across trading and

nontrading periods.2 Therefore, the practical relevance of the optimal trading strategy obtained in

these models can be limited. In addition, one of the important implications of this assumption is

that the effect of transaction costs on liquidity premium is too small to match empirical evidence

(e.g., Constantinides (1986), Jang, Koo, Liu and Loewenstein (2007)).

In this paper, we consider a continuous-time optimal portfolio choice problem of a small investor

who can trade a riskfree asset and a risky stock that is subject to proportional transaction costs.

Different from the standard literature, we assume market closes periodically and stock return

dynamics may differ across trading and nontrading periods. We show the existence, uniqueness,

and smoothness of the optimal trading strategy. We derive a closed-form solution in the absence of

transaction costs. In the presence of transaction costs, we explicitly characterize the solution to the

investor’s problem and derive certain helpful comparative statics on the optimal trading strategies.

We find that in the absence of transaction costs, the investor almost always trades at market close

and market open if Sharpe ratios vary across trading and nontrading periods. In the presence of

even small transaction costs, however, he trades only infrequently.

1French and Roll (1986) conclude that the principle factor behind high trading-time variances is the private
information revealed by informed trades during trading hours, although mispricing also contributes to it.

2See, for example, Merton (1971), Constantinides (1986), Vayanos (1998)
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This paper also contributes to the literature on the effect of transaction costs on liquidity pre-

mia. As explained by Constantinides (1986), consider two assets with perfectly correlated rates of

return and equal variance, where the first asset is subject to proportional transaction cost but the

second is not. Then if both assets are held in equilibrium, the expected return on the first asset

must exceed that of the liquid counterpart by some liquidity premium. Following Constantinides

(1986), we define liquidity premium as the maximum expected return an investor is willing to ex-

change for zero transaction cost. Liquidity premia found by most theoretical portfolio selection

models using this measure are well below empirical findings. For example, Constantinides (1986)

finds that the liquidity premium to (round-trip) transaction cost (LPTC) ratio is only about 0.07

for a proportional (round-trip) transaction cost of 1%, while Amihud and Mendelson (1986) find

that the LPTC ratio is about 1.9 for NYSE stocks in their empirical study. Using a regime switch-

ing model, Jang, Koo, Liu and Loewenstein (2007) show that the LPTC ratio given reasonable

calibration is about 0.25. Lynch and Tan (2011) show that incorporating return predictability,

state-dependent transaction costs and wealth shock can generate greater liquidity premia than

Constantinides (1986). However, the liquidity premia found by Lynch and Tan (2011) with reason-

able parameter values are still significantly smaller than the corresponding empirical evidence. We

numerically demonstrate that if one incorporates the well-established fact that market volatility

is significantly higher during trading periods, then transaction costs can have a first order effect

that is comparable to empirical evidence. For example, when the volatility during trading periods

is three (resp., four) times that during nontrading periods, the LPTC ratio in our model is about

1.76 (resp., 2.22) for a proportional round-trip transaction cost of 1%, more than 20 times higher

than what Constantinides (1986) finds. This result is not sensitive to a three-period extension with

an after-hour trading period in addition to day time trading period and overnight market closure
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period. The main intuition for why the liquidity premium is much higher in our model is simple:

The opportunity cost of not being able to rebalance costlessly to take advantage of the time-varying

return dynamics is much greater when return dynamics changes significantly and frequently.

Transaction costs decrease an investor’s utility through two channels: First, the wealth is re-

duced by transaction cost payment; second, the investor cannot always trade to maintain the op-

timal risk exposure. Liquidity premia found in the existing literature (e.g., Constantinides (1986),

Jang et. al. (2007)) mainly come from the transaction cost payment channel. Surprisingly, we find

that the significantly higher liquidity premium in our model mainly comes from the substantially

“suboptimal” risk exposure chosen to control transaction costs.

While it is beyond the scope of this paper to provide an equilibrium model that can generate

different Sharpe ratios across day and night as what is observed in data, such an equilibrium can

be consistent with an economy with heterogeneous investors, e.g., some investors may be more risk

averse toward carrying overnight inventories than others, they may have different time discount

rates, or they may have heterogeneous beliefs on the time varying return dynamics.3 As we have

mentioned above, because of the presence of transaction costs, investors trade infrequently even

when the overnight Sharpe ratio is much greater. This suggests that small heterogeneity may

be sufficient to sustain an equilibrium with different Sharpe ratios across trading and nontrading

periods. In this paper, we take the salient and robust volatility and Sharpe ratio patterns across

trading and nontrading periods that are found by a large literature as a given equilibrium outcome

and consider what is the impact of illiquidity on a small investor who does not have any price

impact.

3We solved a 4-period discrete time equilibrium model with market closure and transaction costs, the results of
which are not reported in the paper to save space. This simple model illustrates that with heterogeneous agents in
an economy, without transaction cost, market closure can cause large trades at market closure and opening time, as
in the no transaction cost case of our paper. In addition, the presence of transaction costs can significantly reduce
trading sizes, as in the case with transaction costs in our paper.
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Our model suggests that conditional on the same increase in the transaction costs (e.g., from

0 to 1%), stocks with greater volatility variation across trading periods and nontrading periods

require higher additional liquidity premia. Indeed, our empirical analysis using the methodology of

Eleswarapu (1997) finds that liquidity premia are higher for stocks with greater volatility-differences

across trading and nontrading periods. More specifically, we examine the cross-sectional relation

between excess return and spread using the Fama-MacBeth type regressions on equally-weighted

portfolios from triple-sorting by average volatility difference σd − σn across trading and nontrad-

ing periods in the previous year, average relative bid-ask spreads in the previous year, and their

estimated betas in the last three years. We find that spreads significantly affect excess returns.

Indeed, consistent with the findings of the existing literature (e.g., Amihud and Mendelson (1986),

Eleswarapu (1997)), the highly significant coefficient of Spread implies a 1% increase in the spread

is associated with a 0.22% increase in the monthly risk-adjusted excess return. However, we find

that this significant impact of transaction costs mainly comes from stocks with high volatility differ-

ences across trading and nontrading periods. For example, for a 1% increase in the spread, stocks

with high volatility-differences require 0.36% higher monthly risk adjusted excess return than those

with low volatility-differences. We further demonstrate that volatility variation across trading and

nontrading periods is still an important determinant of liquidity premium after controlling for firm

size, book-to-market ratio, trading volume, and portfolio loadings on Fama-French factors and

Carhart four-factors. As far as we know, this is the first empirical analysis that indicates that

volatility difference across trading and non-trading periods significantly affects liquidity premia.

With regard to the findings on liquidity premia, the closest work to this model is Jang et. al.

(2007). There are several important differences, however. First, this model can generate liquidity

premium that is comparable to empirical findings. Since Jang et. al. (2007) rely on regime switching
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between bear and bull markets and the historical switching frequency is low, for a reasonable

calibration of their model they can only generate a LPTC ratio of 0.25, which is significantly

lower than those found by empirical studies. Second, we also conduct empirical analysis to test

whether as suggested by our model, volatility variation across trading and nontrading periods

is an important determinant of liquidity premium. Third, this is the first paper to numerically

demonstrate that significantly suboptimal trading strategy caused by transaction cost can be the

main driving force behind a greater liquidity premium. For example, in Jang et. al. (2007), greater

liquidity premium mainly comes from the higher transaction cost payment caused by greater trading

frequency. Finally, since in Jang et. al. (2007), regimes switch at random times, one needs a

good estimation of the switching frequency and estimation error may affect the accuracy of the

liquidity premium estimation. In contrast, in this model, market closes and opens at mostly known

deterministic times and therefore there is no estimation error of the switching times.

This paper is also related to equilibrium models with market closure or with transaction costs.

Hong and Wang (2000) consider an equilibrium model with periodic market closure and CARA

investors.4 They find that the equilibrium volatility during trading periods can be higher. They

also show that closures can make prices more informative about future payoffs. Different from our

model, they do not consider the presence of transaction costs. In an equilibrium model with one

shot market closure, Longstaff (2009) examines the effect of one nontrading period on asset prices.

Consistent with empirical evidence and our model, he finds that the value of liquidity can represent

a large portion of the equilibrium price of an asset. Assuming market is continuously open, Vayanos

4For CARA utility, it is still feasible to solve the investor’s problem for our model. The main difference from
the optimal trading strategy for the CRRA case without transaction cost is that it is optimal to invest a constant
dollar amount (instead of a constant fraction of wealth ) in stock. With transaction costs, there is a time-varying
no-transaction interval for the dollar amount invested in stock, out of which it is optimal to buy or sell to the closest
boundary. As most of the existing literature, we do not consider the CARA case as the main case because there is
no wealth effect on the dollar amount invested in the stock.
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(1998) finds transaction costs have small impact on asset returns. Assuming quadratic transaction

costs, which implies small cost for small trades, Heaton and Lucas (1996) find significant liquidity

premium only in the presence of large transaction costs. Both of these models assume i.i.d. returns

over time.

The rest of the paper is organized as follows. Section 1 presents the model with transaction

cost, market closure, and different return dynamics across trading and nontrading periods. Section

2 solves the case without transaction costs as a benchmark for later comparison. Section 3 provides

characterizations of the solution and some comparative statics for the optimal trading strategy.

Numerical and graphical analysis is presented in Section 4. In Section 5, we extend to a three-

period model: a period with no trade at all, a period with trade but high transaction costs, and a

period with regular trading. In Section 6, we empirically examine whether the volatility difference

across trading and no trading periods is important in affecting liquidity premia. Section 7 closes

the paper. All proofs are presented in the Appendix.

1. The model

We consider an investor who maximizes his constant relative risk averse (CRRA) utility from

terminal liquidation wealth at T ∈ (0,∞). The investor can invest in two financial assets. The

first asset (“bond”) is riskless, growing at a continuously compounded, constant rate r. The

second one is risky (“stock”). Different from the standard literature, we assume that the stock

market closes and opens periodically. Specifically, the investment horizon T is partitioned into

0 = t0 < ... < ... < t2N+1 = T . Market is open in time intervals [t2i, t2i+1] (“day”); while the

market is closed and thus no trading takes place in (t2i+1, t2i+2), ∀i = 0, 1, ..., N (“night”).5 When

market is open, the investor can buy the stock at the ask price SA
t = (1 + θ)St and sell the stock

5These intervals can be of different length, and thus can deal with closure on weekends and holidays.
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at the bid price SB
t = (1−α)St, where θ ≥ 0 and 0 ≤ α < 1 represent the proportional transaction

cost rates and St evolves continuously across day and night as

dSt

St
= µ(t)dt+ σ(t)dBt, (1)

with

µ(t) =

{
µd, day
µn, night

and σ(t) =

{
σd, day
σn, night,

where µd > r, µn > r, σd > 0, σn > 0 are assumed to be constants and {Bt; t ≥ 0} is a one-

dimensional Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0, P ) with B0 = 0 almost

surely. We assume F = F∞, the filtration {Ft}t≥0 is right-continuous and each Ft contains all null

sets of F∞.

When α+ θ > 0, the above model gives rise to equations governing the evolution of the dollar

amount invested in the bond, xt, and the dollar amount invested in the stock, yt:

dxt = rxtdt− (1 + θ)dIt + (1− α)dDt, (2)

dyt = µ(t)ytdt+ σ(t)ytdBt + dIt − dDt, (3)

where the cumulative stock sales process D and purchases process I are adapted, nondecreasing,

and right continuous with D(0) = I(0) = 0 and both dIt and dDt are restricted to be 0 during

night.

Let x0 and y0 be the given initial positions in the bond and the stock respectively. We let

A(x0, y0) denote the set of admissible trading strategies (D, I) such that (2) and (3) hold, and the

investor is always solvent, i.e.,

Wt ≥ 0, ∀t ≥ 0, (4)

where

Wt = xt + (1− α)y+t − (1 + θ)y−t (5)
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is the time t wealth after closing the stock position. Because the investor cannot trade when

market is closed and the stock price can get arbitrarily close to 0 and is unbounded above, solvency

constraint (4) implies that the investor cannot borrow or shortsell at market close.

The investor’s problem is then

sup
(D,I)∈A(x0,y0)

E [u(WT )] , (6)

where the utility function is given by

u(W ) =
W 1−γ

1− γ

and γ > 0 is the constant relative risk aversion coefficient.6

2. Optimal trading without transaction costs

For purpose of comparison, we first consider the case without transaction costs (i.e., α = θ = 0). In

this case when the market is open, the standard Hamilton-Jacobi-Bellman (HJB) equation holds

and it is optimal to continuously trade. The basic idea for solving the investor’s problem is to solve

it backward iteratively for the last day, then the last night, and then the next-to-last day, so on

and so forth.

Let πt = yt
xt+yt

be the fraction of wealth invested in the stock at time t and πM (“Merton

line”) be the optimal fraction of wealth invested in the stock in the absence of market closure and

transaction costs. Then it can be shown that

πM (t) =
µ(t)− r

γσ(t)2
, ∀t ∈ [0, T ]. (7)

Let

J(x, y, t) ≡ sup
(D,I)∈A(x,y)

Et [u(WT )|xt = x, yt = y] (8)

6Most results for the log utility case can be obtained by letting γ approach 1.
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be the value function at time t. We summarize the main result for the no-transaction-cost case in

the following theorem, with the notation convention that t−1 = 0.

Theorem 1 Suppose that α = θ = 0. Then for i = N, N − 1, . . . , 0, the value function at time t

is given by

J (x, y, t) =


(x+y)1−γ

1−γ e(1−γ)η(t)
(∏N

k=i+1G
∗
k

)
, t ∈ [t2i, t2i+1];

(x+y)1−γ

1−γ e(1−γ)η(t)
(∏N

k=i+1G
∗
k

)
Gi

(
y

x+y , t
)
, t ∈ (t2i−1, t2i);

(9)

and it is attained by the optimal trading policy of

π∗
t =

{
πM (t), t ∈ [t2i, t2i+1) ;

π∗
i , t = t2i−1,

when market is open, where

Gi (π, t) = Et

{
[1 + π (R (t2i − t)− 1)]1−γ

}
, (10)

R(h) = exp
[(
µn − r − σ2

n/2
)
h+ σnB(h)

]
, (11)

π∗
i = arg max

π∈[0,1]

Gi (π, t2i−1)

1− γ
, G∗

i = Gi (π
∗
i , t2i−1) , (12)

and

η (t) = r (T − t) +
(µd − r)2

2γσ2
d

N∑
i=0

(t2i+1 − t2i ∨ t)+ (13)

Without market closure, the optimal trading strategy is to invest a constant fraction of wealth

in stock during daytime and a different fraction overnight because of the different return dynamics

across day and night. With periodic market closure, Theorem 1 suggests that when market is open,

the investor invests the same fraction of wealth in stock as in the case without market closure, but,

facing market closure, the investor can no longer keep a constant fraction in stock during night.

Instead, he adjusts his position at market close to a different fraction that is optimal on average,
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loosely speaking. In addition, since the investor cannot trade overnight, the stock position is

stochastic overnight, can be suboptimal just before market open and therefore another discrete

adjustment is also likely necessary at market open. These adjustments at market close and market

open suggest that the trading volumes at these times are higher than during the rest of the trading

hours, predicting a U-shaped trading volume pattern across trading hours, consistent with Hong

and Wang (2000) and empirical evidence. Note that the optimal trading strategy during day is

independent of parameter values during night. We show later that this is no longer true in the

presence of transaction costs.

3. The transaction cost case

In the case where α + θ > 0 , the problem is considerably more complicated. In this case, the

investor’s problem at time t becomes

V (x, y, t) ≡ sup
(D,I)∈A(x,y)

Et [u(WT )|xt = x, yt = y] . (14)

Under regularity conditions on the value function, for i = N,N − 1, ..., 0, we have the following

HJB equations for day time

max{Vt + L V, (1− α)Vx − Vy,−(1 + θ)Vx + Vy} = 0, ∀t ∈ [t2i, t2i+1), (15)

and for night time

Vt + L V = 0,∀t ∈ (t2i−1, t2i), (16)

and at market close before T (i.e., i ≤ N − 1),

V (x, y, t2i+1) = max
∆∈C(x,y)

V (x− (1 + θ)∆+ + (1− α)∆−, y +∆, t+2i+1), (17)

with the terminal condition

V (x, y, T ) =
(x+ (1− α)y+ − (1 + θ)y−)1−γ

1− γ
, (18)
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where

L V =
1

2
σ(t)2y2Vyy + µ(t)yVy + rxVx,

and

C(x, y) = {∆ ∈ IR : x− (1 + θ)∆+ + (1− α)∆− ≥ 0, y +∆ ≥ 0}, (19)

where the restriction set C imposes no borrowing or shorting overnight to ensure solvency.

As we show later, (15) implies that the solvency region for the stock

S =
{
(x, y) : x+ (1− α)y+ − (1 + θ)y− > 0

}
at each point in time during a day splits into a “Buy” region (BR), a “No-transaction” region (NTR),

and a “Sell” region (SR), as in Davis and Norman (1990), Liu (2004), and Liu and Loewenstein

(2002).

The following verification theorem shows the existence and the uniqueness of the optimal trading

strategy. It also ensures the smoothness of the value function except in a set of measure zero.

Theorem 2 (i) The value function is the unique viscosity solution of the HJB equation (15)–

(18).

(ii) The value function is C2,2,1 in (x, y) ∈ S \ ({y = 0} ∪ {x = 0}) , t ∈ (t2i, t2i+1) and in x > 0,

y > 0, t ∈ (t2i−1, t2i), for i = N,N − 1, ..., 0.

The homogeneity of the utility function u and the fact that A(βx, βy) = βA(x, y) for all β > 0

imply that V is concave in (x, y) and homogeneous of degree 1− γ in (x, y) [cf. Fleming and Soner

(1993), Lemma VIII.3.2]. This homogeneity implies that

V (x, y, t) = y1−γφ

(
x

y
, t

)
, (20)
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for some function φ : (α− 1,∞)× [0, T ] → IR.7

Let

z =
x

y
(21)

denote the ratio of the dollar amount invested in the bond to that in the stock. The homogeneity

property then implies that Buy, No-transaction, and Sell regions can be described by two functions

of time z∗b (t) and z∗s (t). The Buy region BR corresponds to zt ≥ z∗b (t), the Sell region SR to

zt ≤ z∗s (t), and the No-Transaction region NTR to z∗s (t) < zt < z∗b (t). A time snapshot of these

regions is depicted in Figure 1. As we show later, the optimal trading strategy in the stock when

market is open is to transact a minimum amount to keep the ratio zt in the optimal no-transaction

region. Therefore the determination of the optimal trading strategy in the stock reduces to the

determination of the optimal no-transaction region. At market close, because of the imminent

market closure, the investor generally chooses a different no transaction region and the change in

the boundaries implies possible lump sum trades at market close. For example, if the investor had

a levered position just before market close, then a lump sum sale would be necessary to ensure

overnight solvency. During market closure, the investor cannot trade and the ratio zt fluctuates

stochastically. Therefore, a lump sum trade may also be optimal at market open, because the

risk exposure might have drifted away from the optimal one during the market closure period. In

contrast to the no-transaction cost case, the optimal fraction of the wealth invested in the stock

during daytime changes stochastically, since zt varies stochastically due to no transaction in NTR.

The nonlinearity of the HJB equation and the time-varying nature of the free boundaries make it

difficult to solve directly. Instead, we transform the above problem into a double obstacle problem,

which is much easier to analyze.8 All the analytical results in this paper are obtained through this

7Since the risk premium is positive, short sale is never optimal and thus y > 0.
8See Dai and Yi (2009) and the references therein for description of this class of problems and solution methodology.
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Figure 1: The Solvency Region

approach.

Let

zM =
γσ2

d

µd − r
− 1 (22)

be the daytime Merton ratio (i.e., the optimal ratio in the absence of transaction costs). We then

have the following comparative statics.

Proposition 1 For any t ∈ [t2i, t2i+1), i = N,N − 1, ..., 0, we have

(i) z∗b (t) ≥ (1 + θ)zM ; (ii) z∗s (t) ≤ (1− α)zM .

Proposition 1 implies that if it is suboptimal to borrow or short sell in the absence of transaction

costs (i.e., zM > 0), then the no transaction region always brackets the Merton ratio.

Because the market closure time is deterministic and the investor can adjust his trading strategy

accordingly, one might conjecture that the optimal buy and sell boundaries are always continuous
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in time from open to close (inclusive) so that transaction costs can be saved from discrete trades.

The following proposition shows that this conjecture is incorrect.

Proposition 2 The sell and buy boundaries have the following properties at t2i+1, i = N − 1, N −

2, ..., 0:

z∗s
(
t−2i+1

)
= min {z∗s (t2i+1), (1− α) zM} ; (23)

z∗b
(
t−2i+1

)
= max {z∗b (t2i+1), (1 + θ) zM} . (24)

As discussed above, when market closes, an investor adjusts his portfolio to be within the

interval [z∗s (t2i+1), z
∗
b (t2i+1)]. As confirmed by results in the next section, Proposition 2 suggests

that an investor may optimally wait until the market closing time to discretely adjust his portfolio.

For example, in the case z∗b
(
t−2i+1

)
= (1 + θ)zM > z∗b (t2i+1), if the investor’s position is above the

overnight buy boundary z∗b (t2i+1) right before market closes, he will perform a discrete purchase

to adjust his portfolio to z∗b (t2i+1). Similarly, an investor may make a discrete sale to adjust his

portfolio to z∗s (t2i+1) if the position is below the overnight sale boundary z∗s (t2i+1) just before

market close. Intuitively, given the much greater volatility during trading periods, eliminating all

possible discrete trades at market close (i.e., choosing continuous trading boundaries) would likely

require the investor make small but more frequent trades during trading hours, and thus would

possibly incur even greater transaction costs than occasional discrete trades. Consistent with this

intuition, as we show in the next section, the investor chooses no transaction regions such that

lump sum trades at market close and market open occur only infrequently to avoid paying large

transaction costs frequently.

By providing bounds on the boundaries, Propositions 1 and 2 also facilitate numerical compu-

tation of the boundaries.
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Figure 2: S&P 500 index returns
This figure plots the realized returns for S&P 500 index from January 1962 to October 2008, where the red
path represents the simple return from market open to market close (“daytime” return) and the blue path
represents the return from market close to next market open (“overnight” return).

4. Numerical analysis

In this section we provide numerical analysis of the impact of market closure and time-varying

return dynamics on optimal trading strategy and liquidity premia, with the numerical procedure

briefly described in Appendix A.5.

Figure 2 plots the realized returns for S&P 500 index from January 1962 to October 2008. This

figure illustrates the much higher volatility during trading periods than that during nontrading

periods, as shown in the literature.9 Consistent with Figure 2, the existing literature on intraday

price dynamics finds that the average per-hour ratio of day-time to overnight volatility is around

4.0 (e.g., Stoll and Whaley (1990), Lockwood and Linn (1990), Tsiakas (2008)). It is also found

in the existing literature that expected returns are not significantly different across day and night.

For example, on the comparison between the expected returns across day and night for six stock

indices (including S&P 500, DJIA, NASDAQ 100), Tsiakas (2008) (p. 257) concludes that “Panel

A indicates that among the six indexes, only for Paris are daytime and overnight expected returns

9Returns in this figure are not adjusted for duration difference between trading and nontrading periods. Such
adjustment would make the volatility difference even more dramatic.
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statistically different with 95% confidence.”

Based on these findings, in the default case we set expected returns to be equal across day and

night and use a lower volatility ratio value of k = 3, which biases against us in finding significant

effects of market closure. To make the closest possible comparison with Constantinides (1986), we

set default parameter values at µd = µn = µ = 0.15, r = 0.10, σ = 0.20, α = 0.5%, θ = 0.5%,

γ = 2, and T = 10.10 For simplicity, we assume that every day market opens for ∆td = 6.5 hours

(from 9:30am to 4pm) and closes for ∆tn = 24− 6.5 = 17.5 hours.

Let the average (annualized) volatility be σ and the ratio of the day volatility to night volatility

be k ≡ σd/σn. Then we have σn = σd/k, where

σd = kσ ·
√

∆td +∆tn
k2∆td +∆tn

. (25)

Then the volatility ratio of 3 implies that the volatility difference across day and night is equal to

σd − σn = 0.225, with σd = 0.337 and σn = 0.112.

4.1. Optimal trading strategy

In Figure 3, we plot the initial optimal trading boundaries in terms of the fraction of wealth invested

in the stock in the daytime and at the market close. Without transaction costs, the investor invests

about 21.99% (Merton line) in the stock in the daytime and 100% at market close because of the

higher overnight Sharpe ratio. Thus the investor buys at market close and sells at market open.

Due to market closure, to avoid insolvency the investor cannot borrow or short at market close and

invests between 56% (the red dot) and 100% (the blue circle) of his wealth in the stock at market

close. In the day time the buy boundary is almost flat at 21.67%, very close to the daytime Merton

10Although both µ and r may be high relative to realizations in recent years, our numerical results demonstrate
that keeping the risk premium constant, varying µ or r does not have significant impact for stock holding and so
what matters is mainly the risk premium, as suggested by (7). In addition, our results are not sensitive to the choice
of the investment horizon, as shown later.
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α = θ = 0.005, σd = 0.337, and σn = 0.112.

line. In the presence of transaction costs, however, the investor chooses a wide no-transaction

region to reduce trading frequency. In particular, the sell boundary is well above the Merton line

and increases to the sell boundary at market close (the blue circle). If just before market close, the

position is below the buy boundary at market close (the red dot), then the investor buys to reach

56%. Due to no trade during market closure, the position just before next open may be outside the

next daytime no-transaction region and thus may trigger another discrete trade at market open.

The benefit of a large no transaction region is the reduction in transaction costs. The cost of this

strategy is that in the daytime (resp. at market close) the investor holds significantly more (resp.

less) in the stock than the optimal position for the no-transaction-cost case. This suggests that on

average, the investor tries to smooth out market exposure across trading and nontrading periods

due to transaction costs.
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4.2. Liquidity Premia

Consider two perfectly correlated stocks with the same volatility, but one is subject to transaction

cost and the other is not. For both stocks to be held in equilibrium, the expected return on the stock

that is subject to transaction costs must exceed that of the liquid counterpart by some liquidity

premium. Liquidity premia (defined by Constantinides (1986) as the maximum expected return an

investor is willing to exchange for zero transaction cost) found by most theoretical portfolio selection

models are well below empirical findings. For example, the seminal work of Constantinides (1986)

finds that the liquidity premium to (round-trip) transaction cost (LPTC) ratio is only about 0.07

for a proportional (round-trip) transaction cost of 1%, while Amihud and Mendelson (1986) find

that the LPTC ratio is about 1.9 for NYSE stocks. Using a regime switching model, Jang, Koo,

Liu and Loewenstein (2007) show that the LPTC ratio given reasonable calibration is about 0.25.

Lynch and Tan (2011) show that incorporating return predictability, state-dependent transaction

costs and wealth shock can generate greater liquidity premia than Constantinides (1986). However,

the liquidity premia found by Lynch and Tan (2011) with reasonable parameter values are still

significantly smaller than the corresponding empirical evidence. In this section, we numerically

demonstrate that if one takes into account periodic market closure and the resulting significant

difference of volatilities across day and night, then transaction cost not only has a first order effect

on liquidity premium, but the implied LPTC ratio can match empirical findings.

Let Market A be the actual market with positive transaction costs, different volatilities across

day and night, and market closure at night. Let Market N be exactly the same as Market A except

that there is no transaction cost during daytime in Market N. Let VA(x, y, t;µ) and VN (x, y, t;µ) be

the time t value functions in these two markets respectively given the expected returns µd = µn = µ.
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Following Constantinides (1986), we solve

VN (zM , 1, 0;µ− δ) = VA(zM , 1, 0;µ)

for the liquidity premium δ which measures how much an investor is willing to give up in the

expected return to avoid transaction cost, when he starts at the daytime Merton ratio zM . The

liquidity premium δ is affected by the time varying volatility and the inability to trade overnight

in Markets A and N. To separate out the effect of time varying volatility, we also compute the

liquidity premium when an investor can trade with the same transaction costs day and night (i.e.,

no market closure) and thus leverage is allowed overnight. Specifically, let Market B be exactly

the same as Market A except that the investor can trade overnight subject to the same daytime

transaction costs and let Market M be exactly the same as Market B except that there are no

transaction costs in Market M. We solve

VM (zM , 1, 0;µ− δ̃) = VB(zM , 1, 0;µ)

for the liquidity premium δ̃.11

In general, the effect of transaction cost on liquidity premium comes from two sources. One is

the direct transaction cost payment incurred by trading. The other is the adoption of a trading

strategy that would be suboptimal if there were no transaction cost. To understand which one is

the main driving force behind the large increase in the liquidity premium, we also compute the

liquidity premium caused by the suboptimal trading strategy alone. Specifically, let (I,D) be the

optimal purchase and sale strategy in Market A and V
(I,D)
N (x, y, 0;µ) be the time 0 value function

from following the strategy (I,D) in Market N (without transaction costs). We solve

VN (zM , 1, 0;µ− δ0) = V
(I,D)
N (zM , 1, 0;µ)

11We have also computed the liquidity premia from comparing Market A to Market M. This alternative approach
yields greater liquidity premia. For example, at α = θ = 0.5%, the LPTC ratio is 1.84 and at α = θ = 1%, it is 0.95.
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for the liquidity premium δ0 that is due to the adoption of a suboptimal trading strategy. For

comparison, we compute the same measure for the model of Constantinides (1986).

In Table 1 we compare the liquidity premia, the LPTC ratios and the optimal no-transaction

boundaries in this model with those reported by Constantinides (1986). This table suggests that

liquidity premia significantly increase with transaction costs and are much higher in this model.12

In fact, for a transaction cost rate of < 1% each way (e.g., for trading stock index such as S&P

500), transaction costs can have a first order effect. For example, at α = θ = 0.5%, the LPTC

ratio is as high as 1.76, more than 20 times higher than what is found by Constantinides (1986).

This magnitude of LPTC ratio is consistent with empirical findings such as those by Amihud and

Mendelson (1986) who find an LPTC ratio of 1.9. The second panel in Table 1 shows the results

when the investor can trade overnight with the same transaction cost rate as in daytime. It suggests

that if investors can also trade overnight the LPTC ratio becomes only slightly higher. Therefore,

neither market closure per se nor the implied forced liquidation for levered daytime position is

important for our results, what is important is the large volatility variation caused by market

closure.13

One might suspect the greater liquidity premium may come from our assumption that an in-

vestor can trade continuously in the absence of transaction costs and thus the presence of transaction

costs can significantly reduce the utility of the investor. To numerically demonstrate that our re-

sults are not driven by the “literal” continuous-time setting, we also compute the liquidity premium

when we allow an investor to only trade at most twice a day with and without transaction costs.

12As the transaction costs increase, the difference between the two model decreases. This is because the investor
optimally trades less often when transaction costs increase. Indeed, in the extreme case with α = 1, in both models
the investor never invests in stock and thus in both models the liquidity premia are equal to the risk premium of the
stock (i.e., δ = µ− r = 0.05), which implies that there are no difference across these two models in terms of LPTC.

13The typical LPTC ratio found by Jang et. al is around 0.25. They report the ratio of liquidity premium to the
one sided transaction costs (δ/α).
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Table 1: Optimal Policy and Liquidity Premia against Transaction Cost Rates

α = θ =: 0.005 0.01 0.02 0.03 0.04 0.05 0.10 0.15

This Model with Market Closure

z∗b (0) 3.590 3.608 3.644 3.680 3.718 3.753 3.932 4.189

z∗s (0) 0.462 0.430 0.402 0.390 0.383 0.379 0.359 0.340

z∗b
(
t−1

)
3.567 3.585 3.621 3.656 3.692 3.727 3.905 4.089

z∗s
(
t−1

)
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

z∗b (t1) 0.759 0.813 0.909 1.009 1.120 1.242 2.132 4.061

z∗s (t1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Liquidity Premium δ 1.76% 1.84% 1.96% 2.10% 2.24% 2.30% 2.80% 3.00%

δ/ (α+ θ) 1.76 0.92 0.49 0.35 0.28 0.23 0.14 0.10

δ/δC 22.01 13.09 7.87 5.65 4.51 3.80 2.13 1.43

δ0/δ × 100 95.80 92.37 86.84 82.69 79.60 77.38 74.63 79.55

This Model without Market Closure

δ̃/(α+ θ) 1.84 0.95 0.50 0.36 0.28 0.23 0.14 0.11

δ̃/δC 23.01 13.56 8.05 5.73 4.54 3.82 2.14 1.44

Constantinides (1986)

z∗b, C 0.690 0.726 0.783 0.832 0.877 0.920 1.122 1.326

z∗s, C 0.566 0.561 0.555 0.550 0.546 0.542 0.525 0.509

Liquidity Premium δC 0.08% 0.14% 0.28% 0.36% 0.48% 0.60% 1.40% 2.10%

δC/(α+ θ) 0.08 0.07 0.07 0.06 0.06 0.06 0.07 0.07

δ0C/δC × 100 9.50 13.79 20.44 24.38 27.49 30.08 35.79 36.10

This Model, but with at most two trades a day

δ̃/(α+ θ) 1.84 0.95 0.50 0.36 0.28 0.23 0.14 0.11

δ̃/δC 23.01 13.56 8.05 5.73 4.54 3.82 2.14 1.44

z∗b and z∗s are the buy and sell boundaries. t−1 is just before first closing and t1 is at first closing. δ, δ̃,

and δC are the time 0 liquidity premia, δ0 measures the loss in risk premium from using the corresponding

no trading region in the absence of transaction costs, all starting from the daytime Merton line. Other

parameters: γ = 2, T = 10, µd = µn = 0.15, r = 0.10, ∆td = 6.5 hours, ∆tn = 17.5 hours, σd = 0.337, and

σn = 0.112.
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We find the results are almost identical, as reported in the last panel of Table 1.14

One typical explanation for a higher liquidity premium when investment opportunity set changes

is the increase in transaction cost payment resulted from higher trading frequency (e.g., Jang et.

al (2007)). To help understand whether higher transaction cost payment is also the main driving

force behind the high LPTC ratio in our model, we also report the liquidity premium δ0 that

is solely due to the “suboptimal” trading strategy. In contrast to conventional wisdom, Table 1

shows that only a small percentage of the liquidity premium is from transaction cost payment.

The vast majority of the liquidity premium comes from the “suboptimal” stock position. This

finding suggests that with the large volatility difference, the investor chooses a wide no transaction

region to reduce transaction cost payment at the cost of keeping significantly suboptimal average

positions. Indeed, as Table 1 shows, the no-transaction region in this model is much wider than

that in Constantinides (1986). For example, if α = θ = 0.01, the time 0 NTR in this model

is (0.430, 3.608) which is significantly wider than (0.561, 0.726) that is optimal in Constantinides

(1986).

However, wider no transaction regions do not necessarily imply the trading frequency in this

model is lower than that in Constantinides (1986), because frequent market closure may increase

rebalancing needs and thus also trading frequency. To compare the trading frequency and transac-

tion cost payment across these two models, we conduct Monte Carlo simulations of 10,000 sample

paths on these two models and report related results in Table 2.

Table 2 shows that the average time from a purchase to the next sale is about 2.8 years in our

model in contrast to 1.8 years in Constantinides (1986). This suggests that the trading frequency

14In the default case, we assume market opens every day, ignoring the fact that market is closed during weekends
and holidays. To see if this significantly biases our results, we also conduct the same analysis when we take into
account the weekends and holiday closure. In addition, we also computed LPTC ratios for various risk aversion levels.
We find the results are very similar, with LPTC ratios of 1.5 or higher. These results are not reported here to save
space, but available upon request.
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Table 2: Simulation Results

This model Constantinides (1986)

α = θ = 0.005 0.01 0.005 0.01

Average daily $ trading volume ×104 3.8 3.2 1.3 1.2

PVTC 0.5% 0.9% 0.2% 0.4%

Average time from buy to sell (years) 2.8 4.5 1.8 2.6

PVTC is the discounted transaction costs paid as a percentage of the initial wealth. Other parameters:

γ = 2, T = 10, µd = µn = 0.15, r = 0.10, ∆td = 6.5 hours, ∆tn = 17.5 hours, σd = 0.337, and σn = 0.112.

in our model is lower than that in Constantinides (1986), consistent with the fact that very few

investors day trade even with significant Sharpe ratio variations across day and night. This confirms

the intuition that to avoid large transaction cost payment, the investor chooses a trading strategy

to significantly reduce trading frequency. On the other hand, Table 2 also shows that even though

the trading frequency is lower, the transaction costs paid in this model are still greater than that

in Constantinides (1986). For example, with 0.5% transaction cost rate, the present value of

transaction costs paid is 0.5% of the initial wealth while it is only 0.2% in Constantinides (1986).

This is mainly because trading in this model can involve large discrete trades at market close

and market open, while in Constantinides (1986), only infinitesimal trading at the boundaries can

happen after time 0. In other words the average per-trade trading size is greater in this model,

which is also corroborated by the trading volume reported in Table 2.

In Figure 4, we plot the LPTC ratios against the day-night volatility difference σd−σn, holding

the average volatility σ constant, for three different transaction cost levels of α = θ = 0.5%, 0.75%,

1%. This figure shows that controlling for the same transaction cost, LPTC is sensitive to and

increasing in the volatility difference across daytime and overnight. For example, at σd−σn = 0.15,

the LPTC ratio is about 0.90 and it increases to 2.10 when σd − σn increases to 0.25. It is worth
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Figure 4: LPTC ratios against day-night volatility difference.
Parameter default values: µd = µn = 0.15, r = 0.10, σ = 0.20, ∆td = 6.5 hours, and ∆tn = 17.5 hours.

noting that at σd−σn = 0, the LPTC ratio is close to that of Constantinides (1986). This suggests

that the effect of the presence of intertemporal consumption on liquidity premium is small. In

addition, Figure 4 also suggests that controlling for the same volatility difference, the LPTC ratio

decreases with transaction costs, consistent with Table 1. These results motivate some of our

subsequent empirical analysis.

One concern about our results may be that we have assumed that the expected returns across

day and night be the same. This assumption is motivated by the empirical findings that either the

expected returns do not vary significantly across trading and nontrading periods or the returns over

the nontrading periods are significantly higher than those over the trading periods (e.g., Tsiakas

(2008)). While it is beyond the scope of this paper to provide an equilibrium model that can

generate different Sharpe ratios across day and night, such an equilibrium can be consistent with

an economy with heterogeneous investors, e.g., some investors may be more risk averse toward

carrying overnight inventories than others, or they may have heterogeneous beliefs on the time
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Figure 5: LPTC ratios against overnight risk premium µn − r.
Parameter default values: µd = 0.15, r = 0.10, α = θ = 0.005, ∆td = 6.5 hours, ∆tn = 17.5 hours,
σd = 0.337, and σn = 0.112.

varying return dynamics. As we have shown above, because of the presence of transaction costs,

investors trade infrequently even when the overnight Sharpe ratio is much greater. This suggests

that with transaction costs, small heterogeneity may be sufficient to sustain an equilibrium with

different Sharpe ratios across trading and nontrading periods.

However, as a robustness check, we present Figure 5 to show how LPTC varies as a function

of the overnight risk premium. Figure 5 shows that the LPTC ratio increases with the overnight

expected return and even if the night time expected return is significantly lower than that in the

day time, the LPTC ratio can still be greater than 1. For example, suppose the overnight risk

premium is only 3.5%, 30% lower than that in the day time (5%). Figure 5 indicates that for

volatility difference of 0.225, the LPTC ratio is still as high as 1.05, while for volatility difference

of 0.267 (corresponding to a volatility ratio of 4), the LPTC ratio becomes 1.52. This is because

the overnight volatility is much smaller than the daytime volatility.

Another concern about the high LPTC ratio may be that in the main model there is only one
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Figure 6: LPTC ratios against day-night volatility difference: the Two-stock Case.
Parameter default values: µL = 0.03, µI = 0.08, σL = 0.15, σI = 0.25, ρ = 0.7, kL = 1, ∆td = 6.5 hours,
∆tn = 17.5 hours, and α = θ = 0.005.

stock the investor can trade. If a less illiquid and correlated stock were available, then the investor

would be able to trade more in the less illiquid stock to achieve a similar risk exposure at a lower

cost and thus the LPTC ratio for the illiquid stock would be lowered. To examine this possibility,

in Figure 6 we plot the LPTC ratio against the day-night volatility difference for the illiquid stock

from solving a two-stock model.15 Figure 6 shows that our results are robust to the availability

of a liquid (zero transaction cost) and highly correlated stock (ρ = 0.7) and the LPTC ratio still

monotonically increases with the volatility difference. In addition, Figure 6 suggests that the LPTC

ratio can be quite insensitive to a change in the investment horizon. For example, shortening the

investment horizon by 5 years only slightly increases the ratio.

15This two-stock model is presented in an earlier version of the paper. To save space, we omit it in this version.
The subscripts L and I for default parameter values denote the liquid and illiquid stocks respectively.
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5. A three-period extension

In our main model, we assume that either market is open and an investor can trade subject to

relatively small transaction costs or market is closed and the investor cannot trade at all. How-

ever, in practice, some investors can trade in the after-hour market although at higher transaction

costs. We next consider a three-period extension of our main model to examine the impact of this

additional trading opportunity on our main results.

More specifically, the investment horizon T is partitioned into 0 = t0 < ... < ... < t3N+1 = T .

Time intervals [t3i, t3i+1] denote regular-hour trading periods within which an investor can trade

as in the day period in the main model, time intervals (t3i+1, t3i+2] represent after-hour trading

periods within which the investor can also trade the stock but at higher transaction cost rates αa

and θa, and the market is closed and thus no trading takes place in (t3i+2, t3i+3), ∀i = 0, 1, ..., N .

The stock price evolves as in (1) with

µ(t) =


µd, regular-hour
µa, after-hour
µn, night

and σ(t) =


σd, regular-hour
σa, after-hour
σn, night,

where µd > r, µa > r, µn > r, σd > 0, σa > 0, σn > 0 are assumed to be constants. The dynamics

for the dollar amount xt in the risk free asset and the dollar amount yt in the stock are the same

as in (2) and (3) except for the after-hour period, α and θ are replaced by αa and θa respectively.

Let V (x, y, t) be the value function in this three-period model similarly defined as in (14).

Similar to the main model, we have the HJB equations for regular-hour trading period:

max {Vt + L V, (1− α)Vx − Vy,− (1 + θ)Vx + Vy} = 0, t ∈ [t3i, t3i+1],

for the after-hour trading period:

max {Vt + L V, (1− αa)Vx − Vy,− (1 + θa)Vx + Vy} = 0, t ∈ (t3i+1, t3i+2],
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and for the no-trading period:

Vt + L V = 0, t ∈ (t3i+2, t3i+3),

where L V is as defined in (19). For connecting conditions between periods, we have at the regular-

hour ending time t = t3i+1,

V (x, y, t3i+1) = max
∆∈C(x,y)

V (x− (1 + θ)∆+ + (1− α)∆−, y +∆, t+3i+1), (26)

and at the market closing time t = t3i+2,

V (x, y, t3i+2) = max
∆∈Ca(x,y)

V (x− (1 + θa)∆
+ + (1− αa)∆

−, y +∆, t+3i+2), (27)

where C(x, y) is as in (19) and

Ca(x, y) = {∆ ∈ IR : x− (1 + θa)∆
+ + (1− αa)∆

− ≥ 0, y +∆ ≥ 0}. (28)

The terminal condition at T is the same as in (18). A verification theorem can be proven using

similar arguments to that for Theorem 2. As before, using homogeneity we can write the value

function in the form as in (20).

To facilitate numerical computation of the boundaries, we also derive similar results to Propo-

sitions 1 and 2.16 Let zM be as defined in (22) and similarly we define

zaM =
γσ2

a

µa − r
− 1. (29)

Proposition 3 For i = N,N − 1, ..., 0, we have

(i) z∗b (t) ≥ (1 + θd)zM ; z∗s (t) ≤ (1− αd)zM , for any t ∈ (t3i, t3i+1).

(ii) z∗b (t) ≥ (1 + θn)z
a
M ; z∗s (t) ≤ (1− αa)z

a
M , for any t ∈ (t3i+1, t3i+2).

16The proofs of Propositions 3 and 4 are similar to those for Propositions 1 and 2 and thus omitted to save space.

28



Proposition 4 The sell and buy boundaries have the following properties for i = N,N − 1, ..., 0 :

(i) at t3i+1,

z∗s (t
−
3i+1) = min{z∗s (t3i+1), (1− α)zM};

z∗b (t
−
3i+1) = max{z∗b (t3i+1), (1 + θ)zM};

(ii) at t3i+2,

z∗s (t
−
3i+2) = min{z∗s (t3i+2), (1− αa)z

a
M};

z∗b (t
−
3i+2) = max{z∗b (t3i+2), (1 + θa)z

a
M}.

We use a similar numerical procedure to that for the main model to solve for the optimal trading

strategy and liquidity premium. We report the results in Table 3. In the base case, we set the

after-hour trading period ∆ta to be 3 hours, with the rest of the parameter values remaining the

same as those in Table 1. Table 3 shows that not only qualitatively results are the same as in the

main model, the magnitudes are also similar. For example, the buy boundaries just before and

at the end of the regular-trading period are close to those in Table 1, from 3.567 to 3.575 and

0.759 to 0.824 respectively. In addition, the liquidity premium magnitudes are only slightly lower

than those in the two period model, 1.75 versus 1.76. We find that changing the length of the

after-hour trading period or the transaction costs in the after-hour trading period does not have

significant impact on these results. Overall, the effect of after-hour trading seems relatively small.

As shown before, the main driving force behind the higher liquidity premia in our model is the high

opportunity cost of not being able to rebalance costlessly to take advantage of the time varying

volatility. While adding the extended trading hours helps investor better manage the after-hour

portfolio, it does not significantly reduce the rebalancing cost from the optimal regular-hour position

to the optimal after-hour position in the absence of transaction cost. In addition, because with
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even very small transaction cost an investor would trade already very infrequently, the reduction

of after-hour transaction cost from infinity (i.e., the two period model, no after-hour trading) to

a small positive level (e.g., 2.5%, very infrequent trading) does not significantly change the value

function. Therefore, adding the extended trading hours only changes the numerical results slightly.

Table 3: Optimal Policy and Liquidity Premia against Transaction Cost Rates

z∗b (t
−
1 ) z∗b (t1) z∗b (t

−
2 ) z∗b (t2) δ/(α+ θ) δ/δC δ0/δ

Base Case 3.575 0.824 0.820 0.799 1.75 23.20 96.98
αa = θa = 0.05 3.575 0.846 0.840 0.799 1.75 23.20 96.09
αa = θa = 0.10 3.575 0.885 0.804 0.799 1.75 23.20 94.67
αa = θa = 0.15 3.575 0.925 0.920 0.799 1.75 23.20 92.73

∆ta = 5 3.575 0.931 0.926 0.902 1.75 23.08 97.00
∆ta = 10 3.575 1.459 1.445 1.407 1.75 23.96 97.41
k = 4 4.097 0.837 0.837 0.814 2.21 31.18 98.38

Base case: γ = 2, µd = µa = µn = 0.15, r = 0.10, α = θ = 0.005, αa = θa = 0.025, ∆td = 6.5,
∆ta = 3, ∆tn = 24−∆td −∆ta , σd = 0.337, σa = σn = 0.112, and T = 10.

6. Empirical analysis of the impact of the volatility difference on
liquidity premia

There are three main conclusions from the above analysis: (1) Market closure and the volatility

difference between the trading and non-trading periods may change the optimal trading strategy

significantly; (2) The transaction costs can have a large impact on liquidity premia comparable to

empirical findings; and (3) Conditional on the same increase in the transaction costs (e.g., from 0

to 1%), stocks with greater volatility variation across trading and nontrading periods require higher

additional liquidity premia, as shown in Figures 4 and 5.

There is a vast literature on the determinants of liquidity premia (e.g., Amihud and Mendelson

(1986) and Eleswarapu (1997)). However, as far as we know, our model is the only one that suggests

volatility variation across trading and nontrading periods can be an additional determinant of
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liquidity premia. In addition, no empirical studies have investigated such a possibility. Therefore,

in this section, we empirically investigate this third main result (i.e., whether indeed the volatility

variation significantly affects liquidity premia) by closely following the methodology of Eleswarapu

(1997).

6.1. Data and portfolio formation

As argued by Eleswarapu (1997), bid-ask spreads for NASDAQ stocks better represent the cost of

transacting than those for NYSE stocks. Accordingly, we perform our analysis on NASDAQ stocks

and use relative bid-ask spread to measure transaction costs as Eleswarapu (1997). Because of the

limited availability of daily open and closing prices, we use the sample period of 1991-2012.17 The

primary data consists of daily open and closing prices and closing bid and ask prices of Nasdaq

stocks provided by the Center for Research in Security Prices (CRSP). Since there are 6.5 trading

hours in a normal trading day and the hours between close and next open may vary, the continuously

compounded daily returns for the trading period (rdt) and for the non-trading period (rnt) for stock

i are computed as

ridt =
24

6.5
log

(
closing price

open price

)
, (30)

rint =
24

hours between open and previous close
log

(
open price

previous closing price

)
. (31)

This takes into account weekends and holidays market closures. For stocks with cash dividends,

stock splits, and stock dividends events, we use the CRSP daily events distribution database to

make corresponding adjustments in return calculations.

For each stock, the spread in a month is calculated by averaging the daily relative bid-ask spread

in the month, where the relative spread is equal to the dollar closing bid-ask spread divided by the

17In an earlier version, we did our analysis using the sample period of 1991-2007 to address the possible concerns
over the abnormal effects of the financial crisis. The qualitative results are not affected by the choice of the sample
period.
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closing mid-quote price, i.e.,

Spreadit =
1

Nit

Nit∑
1

closing ask − closing bid

(closing ask + closing bid)/2
, (32)

where Nit is the number of trading days in month t for stock i.

For our test, we form 245 equally-weighted portfolios from triple-sorting by average volatility

difference across trading and nontrading periods in the previous year (5 groups), average relative

bid-ask spreads in the previous year (7 groups), and their estimated betas in the last three years (7

groups). The volatility difference across trading and nontrading periods for a month is computed

using the daily returns rdt and rnt in the month. We assume that the continuously compounded

returns in the trading and nontrading periods are normally distributed with constant means and

variances. Because the observed nontrading periods returns rint may be unevenly spaced across

time, we use the weighted (by the square-root of time between observations) least square regression

method to estimate the volatilities to address the potential heteroskedasticity problem.

Betas of individual stocks are estimated using market model regressions with data over the

three-year portfolio formation period prior to the test year:

rit = αi + βirmt + εit, t = 1, 2, ..., 36, (33)

where rit and rmt are the month t excess returns (over the corresponding one-month Treasury bill

return) on stock i and on the market index, respectively. We use the value-weighted portfolio of

all NASDAQ stocks as the market index.

For each test year, stocks are ranked and divided into five groups as evenly as possible based on

the average volatility difference in the previous year. Each of these five groups is then divided into

seven equal subgroups according to their average bid-ask spread in the previous year. Finally, each

of the subgroups is ranked and divided into seven equal sub-subgroups according to their estimated
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beta coefficients for the previous three-year period. Therefore, there are 245 test portfolios with

approximately equal number of stocks. The monthly portfolio returns in a test year are computed

by averaging the excess returns of the stocks in each of the 245 portfolios each month. This portfolio

formation procedure is performed for each of the 19 test years (1994-2012).

6.2. Descriptive statistics

6.2.1. Trading versus non-trading return volatility

Table 4 shows that the average annualized volatility difference is 0.70 for all NASDAQ stocks during

the period 1993-2012, ranging from 0.12 for the lowest quintile to 1.51 for the highest quintile.18

To compare our volatility variation results with those in the existing literature, we also compute

the per-hour ratios of return volatilities in trading versus nontrading periods and report them in

Table 5. Table 5 shows that the average per-hour volatility ratio of trading versus non-trading

periods is 3.24, ranging from 2.10 for the lowest trading volume quintile to 4.07 for the highest

quintile.19 Consistent with our model’s implication and the results in Stoll and Whaley (1990),

Table 5 also suggests that as volatility ratio increases, the daily dollar trading volume of a stock

increases.

6.2.2. Average spread, Beta, and market value of equity for the portfolios

In Table 6, we report average spread, beta, and market value of equity for the 49 spread-beta

sorted portfolios (formed from the 245 test portfolios by pooling the portfolios with the same ranks

according to spread and beta) over the 19 test-year periods. Table 6 shows that portfolio spreads

range from 0.780% to 11.136% for the time period 1993-2012. In contrast, the portfolio spreads

range from 1.87% to 32.53% for the time period 1976-1990 as reported in Eleswarapu (1997). Thus,

18The annualization is done to be consistent with what we use in previous sections.
19The dollar trading volume of a stock is calculated as the closing price multiplied by the total number of shares

of a stock sold on each day.
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Table 4: Average Volatility-difference for NASDAQ Stocks during the Period 1993-2012 
 

 All 

stocks 

By volatility-difference annual average quintile
a 

Smallest          2                      3                         4            Largest 

 

Average volatility-difference 

 

0.0445 

 

0.0076 

 

0.0257 

 

0.0387 

 

0.0548 

 

0.0956 

Standard error 
b
 (×10

-2
)
 

0.0525 0.0438 0.0084 0.0088 0.0112 0.033 

Average number of firms  3664 732 733 733 733 733 
       

 

Average volatility-difference is calculated as follows: (1) the difference between open-to-close return 

volatility and previous close-to-open return volatility is calculated for each stock for each month, and then 

averaged for each year; (2) the annual average is then averaged across all stocks in the sample and all 

stocks in each quintile; (3) the resulting average is then averaged across 20 years. 
a
Stocks are ranked by volatility-difference annual average and divided into quintiles each year. 
b
The standard error is based on the distribution of the 20 yearly average of volatility-difference annual 

average. 
 

Table 5: Average Ratios of Open-to-close Return (���) Volatility to Previous Close-to-open 

Return (���) Volatility for NASDAQ Stocks during the Sample Period 1993-2012 
 

  All 

 stock 

By daily dollar volume quintile
a 

   Smallest            2                3                  4            Largest 

 

Average ratio 

 

3.24 

 

2.10 

 

2.73 

 

3.44 

 

3.86 

 

4.07 

Standard error
b 

0.025 0.011 0.025 0.036 0.033 0.028 
 

      

 

Average number of firms  

 

3664 

 

732 

 

733 

 

733 

 

733 

 

733 

Sample size 240 240 240 240 240 240 

Average dollar volume(×1000) 11361.67 24.72 125.32 511.87 2134.17 54028.33 

 
 

Volatility ratios are calculated for each stock in each month and are then averaged across all stocks in the 

sample and all stocks within each dollar trading volume quintile. Finally, the average monthly ratios are 

averaged across the 240 months in the 20-year sample period.  
a
Stocks are ranked within each month by average daily dollar trading volume in the month and divided 

into quintiles each month during the sample period. The dollar trading volume of a stock is calculated 

using the closing price × the total number of shares of a stock sold on each day. 
b
The standard error is based on the distribution of the 240 monthly average ratios. 
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Table 6: Average Relative Bid-Ask Spread, Betas and Size (Market Value of Equity) for the 49 

Spread/Beta Portfolios of NASDAQ Firms, 1994-2012 

 
Assignment of a stock to a particular spread/beta portfolio in a given test year depends on two criteria: 1) 

the average spread in the previous year (7 groups), and 2) a stock's beta estimated with 36 months of 

preceding returns (7 groups).  In this table, we report the average spread, betas and market value of equity 

for the 49 portfolios.  Each cell contains three entries. The top number is the relative bid-ask spread of the 

portfolio. The portfolio spread is the average spread of the stocks in the portfolio in the year preceding the 

test year. The second number is the estimated portfolio beta computed with 228 months of portfolio return 

data (1994-2012). The third number is the market value of equity (size), where the equity value of the 

firm is computed in December in the year preceding the test year. Portfolio spreads and market value of 

equity are averaged over the 19 years, 1994-2012. 

 

 Spread (in percentage),  Beta,  Size (in millions) 

 Beta group 

Spread 

Group 

Lowest 2 3 4 5 6 Highest Mean 

Lowest 0.780 0.752 0.723 0.706 0.693 0.696 0.705 0.722 

 1.032 1.065 1.194 1.252 1.276 1.401 1.657 1.268 

 2561 2358 3172 3490 4531 6032 5665 3973 

         

2 1.355 1.348 1.338 1.330 1.323 1.332 1.326 1.336 

 1.069 1.111 1.146 1.203 1.295 1.438 1.582 1.263 

 628 556 630 558 610 853 910 678 

         

3 1.918 1.901 1.884 1.908 1.883 1.894 1.885 1.896 

 1.020 1.053 1.150 1.177 1.314 1.366 1.578 1.237 

 286 285 295 288 330 355 584 346 

         

4 2.593 2.588 2.583 2.570 2.583 2.587 2.565 2.581 

 1.038 1.059 1.144 1.168 1.239 1.375 1.563 1.227 

 175 167 168 182 170 201 273 191 

         

5 3.552 3.547 3.576 3.530 3.549 3.531 3.510 3.542 

 1.053 1.072 1.073 1.210 1.215 1.250 1.488 1.194 

 102 129 107 98 104 93 143 111 

         

6 5.135 5.109 5.108 5.099 5.045 5.062 5.051 5.087 

 0.938 0.973 1.026 1.041 1.204 1.222 1.469 1.125 

 55 54 53 59 58 56 57 56 

         

Highest 10.155 11.136 9.615 9.780 9.605 9.618 10.281 10.027 

 0.847 0.893 0.930 0.934 0.989 1.144 1.306 1.006 

 30 27 26 26 25 27 30 28 

         

Mean 3.785 3.629 3.566 3.540 3.523 3.531 3.617 3.599 

 1.009 1.030 1.088 1.141 1.218 1.314 1.521 1.189 

 549 507 639 672 832 1088 1095 769 
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the spreads have become significantly smaller in recent years. The portfolio betas range from 0.847

to 1.657. The portfolio market value is computed by averaging the market value of equity (size) of

the firms in the portfolio in the December preceding a test year. The average equity values range

from $ 25 million to $ 6.03 billion. Consistent with Eleswarapu (1997), we find that stocks with a

higher market equity value tend to have smaller spreads as illustrated in Table 6.

6.3. Empirical results

We examine the cross-sectional relation between excess return and spread for the 98 portfolios in the

lowest and the highest quintiles of the volatility-difference groups using the Fama and Macbeth type

regressions as in Eleswarapu and Reinganum (1993), and Eleswarapu (1997). The excess returns of

the 98 portfolios are regressed on their unconditional betas, spreads, and Log(Size) each month.20

To test the impact of volatility-difference across trading and nontrading periods on the relation

between excess return and spread, we interact spread with a dummy variable (Dummy) that is set

to 1 for the highest quintile and 0 for the lowest one and include this interaction term as an additional

variable in the regression. The time-series average of the monthly regression coefficients and the

corresponding standard errors are reported in Table 7. Similar to Amihud and Mendelson (1986)

and Eleswarapu (1997), the first two columns of Table 7 show that transaction costs significantly

affect excess returns. Indeed, the highly significant coefficient of spread implies a 1% increase in the

spread is associated with a 0.22% increase in the monthly risk-adjusted excess return. However, the

third column of Table 7 implies that this significant impact of transaction costs mainly comes from

stocks with high volatility-differences across trading and nontrading periods. More specifically, the

coefficient of the interaction term Spread×Dummy is large, positive, and statistically significant

at the 0.1% level, while the coefficient of spread is no longer significantly different from 0. These

20The average spreads and sizes in the previous year are used in the regressions. Similar to Fama and French (1992),
we use the unconditional portfolio betas estimated using the monthly portfolio returns from all of the test-year periods.
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results imply that as our model suggests, stocks with greater volatility-differences require higher

additional liquidity premium for the same increase in the transaction costs. For example, for a

1% increase in the spread, stocks with high volatility-differences require 0.36% higher monthly risk

adjusted excess return than those with low volatility-differences.

An alternative explanation for the above result may be as follows. Small firms are typically less

frequently traded and so liquidity premia per unit of transaction costs might be higher for small

firms than large firms. In the meantime, small firm returns are also typically more volatile which

might drive the volatility difference across trading and nontrading periods higher than that for

other stocks. Therefore, liquidity premia per unit of transaction costs are higher for stocks with

large volatility differences might be because both liquidity premia per unit of transaction costs and

volatility differences are typically higher for small firms than large firms. To address this concern,

we include this interaction term of Spread with Log(size) in the regression and report the result in

the fourth column. Column 4 shows that the coefficient for the interaction term Spread×Dummy

is still positive and significant after controlling for this size effect. Consistent with this finding,

Column 2 indicates that after controlling for spread, firm size is not statistically significant in

affecting liquidity premia.

We have also done robustness checks such as controlling for book-to-market effect, trading

volume effect, Fama and French three factors and Carhart (1997) four factors, the results remain

essentially the same.21 Overall, our results strongly support our prediction that the volatility

difference across trading and non-trading periods is an important determinant of liquidity premia,

as suggested by our analysis.

21These results are reported in an earlier version of the paper.
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Table 7: Fama-MacBeth Type Regressions for the 98 Portfolios of the Lowest Quintile and 

Highest Quintile, based on Volatility-Difference of NASDAQ Firms, 1994-2012 
 

                   ���:			���	
�� = �� + ��	�����+����
���� + �� 
 

                   ���:			���	
�� = �� + ��	�����+����
���� + �������� ��! + ��                                                             
  

                   �"�:			���	
�� = #� + #�	�����+#���
���� + #������� ��! + #$	%	&&'� 
																																																																																									+#(	��
���� × %	&&'�+�� 

 

Assignment of a stock to a particular variance-difference/spread/beta portfolio in a given test year depends on three criteria: 1) 

the average difference between the trading and non-trading return variances in the previous year, 2) the average spread in the 

previous year, and 3) a stock's beta estimated with 36 months of preceding returns. In the cross-sectional regression, the portfolio 

spread (Spreadpt) is computed from the average of the firm's spread in the preceding year. The Sizept (equity value) is the value in 

December in the year preceding each test year. The portfolio beta (�����) is the unconditional beta which is computed using the 

monthly portfolio returns from all the test period years. The dummy variable (Dummypt) is 1 for portfolios in the highest quintile 

and 0 for portfolios in the lowest quintile, based on the difference between the trading and non-trading period return variances. 

The cross-sectional regression is fit in each month, t, of the test-period years. The coefficients are the time-series (168 months) 

means with corresponding standard errors in parentheses.  

 

 

       

 Regression 

Variable (A) (B) (C)  

     

���� -0.0026 

(0.0058) 

-0.0022 

(0.0058) 

0.0128 

(0.0066) 

 

 

��
��� 
 

0.2784*** 

(0.0560) 

 

0.2718*** 

(0.0485) 

 

-0.1043 

(0.0598) 

 

 

������ �� 
 

 

 

0.0002 

(0.0010) 

 

-0.0019 

(0.0011) 

 

 

   %	&&' 
 

	
��
��� × %	&&'  

   

-0.0380*** 

(0.0071) 

 

 

0.4460*** 

(0.0793) 

 

  

 

N 

 

168 

 

168 

 

 

168 

 

  

      
*** Statistically significant at the 0.1% level. 
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7. Concluding remarks

Existing portfolio choice literature ignores periodic market closure and the significantly different

volatilities across trading and nontrading periods. Therefore, the optimal trading strategy that is

relevant for practice is still largely unknown. In this article, we show that incorporating periodic

market closure and the return dynamics across trading and nontrading periods leads to significantly

different trading strategy. In addition, we numerically demonstrate that transaction costs can have a

first order effect on liquidity premia that is largely comparable to empirical findings. Furthermore,

we provide empirical support for the importance of the volatility difference across trading and

nontrading periods in affecting liquidity premia. As far as we know, this is the first paper that

finds volatility variation across trading and nontrading periods is an important determinant of

liquidity premia.
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APPENDIX

A.1 Proof of Theorem 1

To begin with, we point out

N∑
k=0

(t2k+1 − t2k ∨ t)+ =

{ ∑N
k=i+1 (t2k+1 − t2k) + t2i+1 − t, if t ∈ [t2i, t2i+1) ,∑N
k=i (t2k+1 − t2k) , if t ∈ [t2i−1, t2i) ,

(A-1)

which means the cumulative time in day.

When t ∈ [t2N , t2N+1), the theorem is the well-known Merton’s result, where we follow the

Merton’s strategy πM .

When t ∈ (t2N−1, t2N ), no trading is allowed, then

J (x, y, t) = Ex, y
t [J(x2N , y2N , t2N )]

=
1

1− γ
Ex, y

t

[
(xt2N + yt2N )

1−γ
]
e(1−γ)η(t2N ). (A-2)

It is easy to verify that

Ex, y
t

[
(xt2N + yt2N )

1−γ
]
= (x+ y)1−γ e(1−γ)r(t2N−t)GN

(
y

x+ y
, t

)
.

Substituting into (A-2), we then get

J (x, y, t) =
1

1− γ
(x+ y)1−γ e(1−γ)η(t)GN

(
y

x+ y
, t

)
, (A-3)

where we have used η (t2N ) + r (t2N − t) = η (t) due to (13) and (A-1).

When t = t2N−1 at which trading is allowed, we need to determine the optimal strategy π ∈

[0, 1]. Due to (A-3), we get

J (x, y, t2N−1) = sup
π∈[0,1]

1

1− γ
(x+ y)1−γ e(1−γ)η(t2N−1)GN (π, t2N−1)

=
1

1− γ
(x+ y)1−γ e(1−γ)η(t2N−1)G∗

N ,
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where we have chosen the optimal strategy

π (t2N−1)
∗ = π∗

N .

In terms of induction method, it is easy to see that the value function always takes the form of

1

1− γ
(x+ y)1−γ A(t), t ∈ [t2i, t2i+1],

where A(t) only depends on t. This allows us to use the Merton’s strategy in the day time and to

repeat the above derivation during [t2i−1, t2i+1) for any i. The desired result then follows.

A.2 Proof of Theorem 2

Part i) can be proved using a similar argument as in Shreve and Soner (1994). To show part ii), we

can follow Dai and Yi (2009) to reduce the HJB equation to a double obstacle problem in the day

time (t2i, t2i+1). Then we can obtain C2,2,1 smoothness of the value function for t ∈ (t2i, t2i+1) .

The smoothness of the value function in the night time is apparent.

A.3 Proof of Proposition 1

First, let us introduce a lemma that provides connection conditions at t2i+1 implied by (17).

Lemma 1 Let z∗s (t2i+1) ∈ [0,∞) and z∗b (t2i+1) ∈ (0,∞] be the sell and buy boundary at t2i+1

respectively. Then
V (x, y, t2i+1) = V

(
x, y, t+2i+1

)
, z∗s (t2i+1) < x/y < z∗b (t2i+1)

−(1− α)Vx (x, y, t2i+1) + Vy (x, y, t2i+1) = 0, x/y ≤ z∗s (t2i+1)
(1 + θ)Vx (x, y, t2i+1)− Vy (x, y, t2i+1) = 0, x/y ≥ z∗b (t2i+1) .

(A-4)

Proof of Lemma 1. By definition, the value function V is concave in x and y. We then deduce

Eb
∆
=

{
(x, y) : (1 + θ)Vx − Vy|t=t+2i+1

> 0, x > 0, y > 0
}

Es
∆
=

{
(x, y) : −(1− α)Vx + Vy|t=t+2i+1

> 0, x > 0, y > 0
}
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must be connected. Here we confine ourselves to x > 0 and y > 0, in order to ensure solvency. Due

to the homogeneity of the value function, we can express z∗b (t2i+1) and z∗s (t2i+1) as

z∗b (t2i+1)
∆
= sup

{
x

y
: (x, y) ∈ Eb

}
,

z∗s (t2i+1)
∆
= inf

{
x

y
: (x, y) ∈ Es

}
.

Note that for ∆ > 0,

d

d∆
V
(
x− (1 + θ)∆, y +∆, t+2i+1

)
= − (1 + θ)Vx + Vy,

d

d∆
V
(
x+ (1− α)∆, y −∆, t+2i+1

)
= (1− α)Vx − Vy.

Combining with (17), we get the desired result.

By transformation (20), equations (15), (16), and (18) reduce to
max {φt + L1φ, (z + 1− α)φz − (1− γ)φ,

−(z + 1 + θ)φz + (1− γ)φ} = 0, t ∈ [t2i, t2i+1)
φt + L1φ = 0, t ∈ (t2i−1, t2i)
φ(z, T ) = 1

1−γ (z + 1− α)1−γ ,

(A-5)

where

L1φ =
1

2
σ(t)2z2φzz + β2(t)zφz + β1(t)φ,

with β1(t) = (1 − γ)
(
µ(t)− 1

2γσ(t)
2
)
and β2(t) = −

(
µ(t)− r − γσ(t)2

)
. The solvency region in

trading periods becomes (−(1−α),∞)× [0, T ) ≡ Sz in the space for the ratio z. Thanks to Lemma

1, the connection conditions at t2i+1 become
φ (z, t2i+1) = φ

(
z, t+2i+1

)
, z∗s (t2i+1) < z < z∗b (t2i+1)

−(z + 1− α)φz (z, t2i+1) + (1− γ)φ (z, t2i+1) = 0, z ≤ z∗s (t2i+1)
(z + 1 + θ)φz (z, t2i+1)− (1− γ)φ (z, t2i+1) = 0, z ≥ z∗b (t2i+1) .

(A-6)

We further make a transformation

w(z, t) =
1

γ
log(γφ).
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It follows 
min

{
−wt − L2w,

1
z+1−α − wz, wz − 1

z+1+θ

}
= 0, t ∈ [t2i, t2i+1)

−wt − L2w = 0, t ∈ (t2i−1, t2i)
w (z, T ) = log (z + 1− α)

(A-7)

with the connection condition
w (z, t2i+1) = w

(
z, t+2i+1

)
, z∗s (t2i+1) < z < z∗b (t2i+1)

wz (z, t2i+1) =
1

z+1−α , z ≤ z∗s (t2i+1)

wz (z, t2i+1) =
1

z+1+θ , z ≥ z∗b (t2i+1) .
(A-8)

Denote v = wz. Note that

∂

∂z
(L2w)

∆
= Lv

=
1

2
σ2(t)z2vzz −

(
µ(t)− r − (1 + γ)σ2(t)

)
zvz

−(µ(t)− r − γσ2(t))v + (1− γ)σ2(t)
(
z2vvz + zv2

)
.

Following Dai and Yi (2009), we are able to show that v satisfies the following parabolic double

obstacle problem:
max

{
min

{
−vt − Lv, v − 1

z+1+θ

}
, 1
z+1−α − v

}
= 0, t ∈ [t2i, t2i+1)

−vt − Lv = 0, t ∈ (t2i−1, t2i)
v(z, T ) = 1

z+1−α

(A-9)

subject to the connection condition:
v (z, t2i+1) = v

(
z, t+2i+1

)
, z∗s (t2i+1) < z < z∗b (t2i+1)

v (z, t2i+1) =
1

z+1−α , z ≤ z∗s (t2i+1)

v (z, t2i+1) =
1

z+1+θ , z ≥ z∗b (t2i+1) .
(A-10)

We then infer that for any t ∈ (t2i, t2i+1),

(SR)t
∆
=

{
z : v(z, t) =

1

z + 1− α

}
= {z ≤ z∗s (t)} ,

(BR)t
∆
=

{
z : v(z, t) =

1

z + 1 + θ

}
= {z ≥ z∗b (t)} .

Thanks to (A-9), we have(
− ∂

∂t
− L

)(
1

z + 1− α

)
≤ 0 for z ∈ (SR)t (i.e. z ≤ z∗s (t)), (A-11)(

− ∂

∂t
− L

)(
1

z + 1 + θ

)
≥ 0 for z ∈ (BR)t (i.e. z ≥ z∗b (t)). (A-12)
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Note that(
− ∂

∂t
− L

)(
1

z + 1− α

)
= −L

(
1

z + 1− α

)
=

(1− α) (µd − r)

(z + 1− α)3

[
z + (1− α)

µd − r − γσ2
d

µd − r

]
=

(1− α) (µd − r)

(z + 1− α)3
[z − (1− α) zM ] (A-13)

and similarly (
− ∂

∂t
− L

)(
1

z + 1− µ

)
=

(1 + θ) (µd − r)

(z + 1 + θ)3
[z − (1 + θ) zM ] . (A-14)

Combination of (A-11)-(A-14) yields the desired results.

A.4 Proof of Proposition 2

We only prove (23) as an example. First, let us show

z∗s
(
t−2i+1

)
≤ z∗s (t2i+1).

Suppose not, i.e. z∗s (t
−
2i+1) > z∗s (t2i+1). Let w(z, t) be the solution to the problem (A-7). Since

(z∗s (t
−
2i+1), t2i+1) is in the no-transaction region, w(z, t) is continuous at (z∗s (t

−
2i+1), t2i+1), namely,

w(z∗s (t
−
2i+1), t

−
2i+1) = w(z∗s (t

−
2i+1), t2i+1), then for z ∈ (z∗s (t2i+1), z

∗
s (t

−
2i+1))

w(z, t−2i+1) = w(z∗s (t
−
2i+1), t

−
2i+1)−

∫ z∗s (t
−
2i+1)

z

1

ξ + 1− α
dξ

< w(z∗s (t
−
2i+1), t2i+1)−

∫ z∗s (t
−
2i+1)

z
wz(ξ, t2i+1)dξ

= w(z, t2i+1),

which contradicts the connection condition (A-8).

Clearly z∗s
(
t−2i+1

)
≤ (1− α) zM . So we deduce that

z∗s
(
t−2i+1

)
≤ min {z∗s (t2i+1), (1− α) zM} .
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If z∗s
(
t−2i

)
< min {z∗s (t2i+1), (1− α) zM} , then for

z ∈
(
z∗s

(
t−2i+1

)
,min {z∗s (t2i+1), (1− α) zM}

)
,

we have v (z, t2i+1) =
1

z+1−α and

−vt − Lv|(z,t2i+1)
= 0.

It follows that

vt|(z,t2i+1)
= −L

(
1

z + 1− α

)
=

(1− α) (µd − r)

(z + 1− α)3
[z − (1− α) zM ] < 0,

which conflicts with the fact vt|(z,t2i+1)
≥ 0. The proof is complete.

A.5 Numerical procedure

The combination of (A-5) and (A-6) provides the exact model for portfolio choice with market

closure. To implement the numerical procedure, we use an alternative approximation of (A-5) and

(A-6), which adjusts the model during nighttime by allowing transaction but with huge transaction

costs.

Thus the model for implementation of numerical procedure is

max {φt + L1φ, (z + 1− α)φz − (1− γ)φ,
−(z + 1 + θ)φz + (1− γ)φ} = 0, t ∈ [t2i, t2i+1)

max
{
φt + L1φ, (z + 1− αN )φz − (1− γ)φ,
−(z + 1 + θN )φz + (1− γ)φ

}
= 0, t ∈ (t2i−1, t2i)

φ (z, t2i+1) = φ
(
z, t+2i+1

)
,

φ(z, T ) = 1
1−γ (z + 1− α)1−γ ,

(A-15)

where αN ∈ [0, 1) and θN ∈ [0,∞) are the nighttime proportional transaction costs. In the

numerical procedure, we take αN → 1− and θN ≫ 1, which makes the trading boundaries occur
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very close to the borders of solvency region. In another word, the sell boundary z∗s (t) ≈ 0 and

the buy boundary z∗b (t) ≈ ∞ for t ∈ (t2i−1, t2i). In this way, trading will hardly happen during

nighttime such that (A-15) is equivalent to (A-5) and (A-6) in the limit sense.

(A-15) can be numerically solved by using the penalty method with finite difference discretiza-

tion developed in Dai and Zhong (2010).
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