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a b s t r a c t

This paper develops a two-period model with peak/off-peak demands that incorporates three types of
passengers: (1) passengers who are scheduled for peak departure and depart during the peak period,
(2) passengers who are scheduled for peak departure but depart during the off-peak period because of
congestion, and (3) passengers who are scheduled for off-peak departure. An increase in peak supply
may turn own type-1 passengers into type-2 passengers, which is called self-imposed schedule delay.
Our main result is that carriers with market power internalize self-imposed schedule delay costs. The
investigation of a uniform-toll regime reveals that the welfare-optimal uniform toll corrects for external
schedule delay only if schedule delay cost is sufficiently high.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Twenty percent of airline flights in the United States were
delayed between 2000 and 2007. The problem got worse in the
first half of 2008, with 29% of the flights being delayed or
canceled.1 The causes of delays can vary across countries, but the
high volume of traffic relative to airport capacity (mainly runway
capacity) has been identified as a major cause. An “obvious”
solution is to add more airport (runway) capacity. Economists
have nevertheless advocated the use of the price mechanism,
under which landing fees are based on a flight0s contribution to
congestion, with early models by, for example, Levine (1969),
Carlin and Park (1970) and Borins (1978). Although variations of
congestion pricing were (partially) implemented at airports in
Boston, New York and London (Schank, 2005), congestion pricing
has not really been practiced. The existing landing fees in the US
depend on aircraft weight and on passenger quantities, and the fee

rates are based on the accountancy principle of cost recovery
required usually for a public enterprise.2 In view of the more
recent airport delays, the US Department of Transport identified
congestion reduction as its No. 2 top management challenge, only
second to aviation safety (USDOT, 2008c), and has since 2008
allowed US airports to charge peak-period landing fees in addition
to weight-based fees (USDOT, 2008a, 2008b).

The earlier congestion pricing models were developed along a
line similar to dealing with road congestion. As such, flights
(individual drivers) were treated as atomistic. Daniel (1995) was
the first to study the role of a dominant carrier for airport
congestion pricing. He derived numerical results (calibrated with
data from Minneapolis–St. Paul airport in the US) based on a
bottleneck model with stochastic queues,3 which features a max-
imum of one dominant carrier, a set of atomistic airlines (the
competitive fringe) and uniform preferences for operating times.4

In this model, carriers use airport capacity during the preferred
operating times in order to reduce schedule delays (the absolute
difference between preferred and actual travel times); traffic
volume may, however, become excessive relative to capacity,
which means that passengers may be pushed away from preferred
operating times by congestion. An important, and somewhat
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1 Ball et al. (2010) studied the economic impact of air travel delays in the US.

They found that the total cost of transport delays in 2007 was $31.2 billion, of
which $8.3 billion were borne by airlines due to increased expenses for crew, fuel
and maintenance, among others. $16.7 billion were borne by passengers due to, for
example, delayed flights, flight cancellations and missed connections. The final $2.2
billion costs were based on an estimate of the welfare loss incurred by passengers
who avoid air travel as the result of delays. Indirect effects were estimated to
reduce gross domestic product by further $4 billion. Ball et al. did not consider that
delays would also lead to emissions and other environmental problems. Similar
delays have plagued European and Asian airlines and airports. In China (the world0s
second largest air transport market behind the US) for example, more than 30% of
its domestic flights were delayed in recent years.

2 Zhang (2012) discusses airport improvement fees, which are typically
charged on a per-passenger basis.

3 In Daniel0s, 1995 model (as well as in Daniel0s subsequent studies), queues are
stochastic in the sense that differences between scheduled and actual arrival and
departure times are determined by exogenous random shocks. Notice that actual
arrival and departure times refer to the moment where an aircraft joins the queue.

4 Daniel (2001) extends the basic framework developed in his 1995 paper in
order to capture elastic demands and heterogeneity in the preferences for
operating times.
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surprising, result of Daniel0s analysis is that the existence of a
dominant carrier may have no effect on the level and structure of
welfare optimal airport congestion prices at all. The intuition is
that fringe carriers would take advantage of any attempt to reduce
congestion during preferred operating times (since preferences for
operating times are assumed to be the same for all carriers), which
eliminates any incentives to do so. Thus, carriers should be treated
as atomistic whether there is a dominant carrier or not.5 Similar
results are derived by Brueckner and van Dender (2008) and Silva
et al. (2013) who use a static framework and a deterministic
bottleneck model, respectively.6

A different approach was developed by Brueckner (2002). He
considers a peak/off-peak (POP) model with one congested peak
period, one uncongested off-peak period and an arbitrary number
of identical carriers that compete in quantities a la Cournot.7 In his
model, all passengers who are scheduled for arrival/departure
during peak hours are assumed to be served during peak hours in
spite of congestion. Brueckner finds the intuitive result that con-
gestion is reduced by carrier market power in equilibrium because
carriers recognize that they impose congestion on themselves and
therefore reduce supply. He further provides some empirical
evidence, which supports his results on self-internalization.8 Other
examples for studies that rely on POP models of the Brueckner type
are Basso and Zhang (2008) and Yuen and Zhang (2011) who,
respectively, compare public versus private peak and off-peak
pricing behavior of airports and analyze the role of variable time
valuations for airport congestion pricing.

The contribution of the present paper is to extend the
Brueckner POP approach in order to capture that passengers
who cannot be accommodated during peak hours are diverted
to the off-peak period. In this sense, the model developed in this
paper integrates a crucial element of bottleneck models
(changes in travel times because of limited capacity) into a
POP framework with only two periods. Specifically, passengers
scheduled for peak departure (or peak arrival) may depart (or
arrive) during the peak period with some probability, which is
decreasing in the aggregate quantity of scheduled peak depar-
tures (called peak supply).9 In this setup, we can clearly
distinguish between three types of passengers: (1) passengers
who are scheduled for peak departure and depart during the
peak period, (2) passengers who are scheduled for peak depar-
ture but depart during the off-peak period because of conges-
tion, and (3) passengers who are scheduled for off-peak
departure (and depart during the off-peak period). Note that

an increase in peak supply may leave the aggregate quantity of
type-1 passengers unchanged but increases the quantity of
type-2 passengers. To our knowledge, this is the first paper that
identifies and analyzes an environment with these three types
of passengers, which can be used to analyze in a most trans-
parent way the carriers0 incentives to internalize self-imposed
schedule delays in the sense that an increase in peak supply may
turn own type-1 passengers into type-2 passengers.

This paper concentrates on vertical differentiation in the sense
that all passengers prefer a departure during the peak period
relative to a departure during the off-peak period when ticket
prices are the same and congestion is absent.10 Airlines are however
assumed to charge a premium for peak-period services, and this
premium is determined by a (positive) schedule parameter, which
determines the passengers0 schedule delay costs that arise from off-
peak departures, and per-passenger congestion costs. Passengers
are then indifferent between peak departure and off-peak depar-
ture in equilibrium. Taken together, this allows us to abstract away
from passenger choices of departure times and concentrate on
airline scheduling behavior. More specifically, after the airport
determines tolls for the peak and off-peak periods in the first stage,
airlines then simultaneously and individually determine their
aggregate passenger quantities and their peak supply.

The analysis starts with consideration of fixed demand.
It shows that there is internalization of self-imposed schedule
delay and congestion delay costs by carriers with market power
when a competitive fringe is absent, while there is no self-
internalization at all when a competitive fringe is present. It is
further shown that the peak-toll incorporates a premium that is
fully determined by schedule delay cost independent of whether a
competitive fringe exists or not. In this case, airport cost recovery
(for an arbitrary size of peak capacity) can be achieved if the
schedule parameter is sufficiently high relative to average capacity
costs.11

Morrison (1987), Morrison and Winston (1989) and Pels et al.
(2003), among others, showed empirically that business passen-
gers have a greater value of time than leisure passengers. Further-
more, Czerny and Zhang (2011, 2012, 2013), Yuen and Zhang
(2011) and Zhang and Czerny (2012) show that carriers0 behaviors
and airport congestion charges depend crucially on the differences
between the business and leisure passengers0 time valuations in a
static environment. Specifically, they show that it is the marginal
passengers0 time valuation attached to congestion delays that
determines carrier behavior and thus congestion prices. The
present paper shows that this changes in the case of a POP
environment with schedule delays. Here, the carriers0 internaliza-
tion of self-imposed schedule delay and congestion delay costs,
and therefore the welfare-optimal peak toll structure and airport
cost recovery, depend on the time valuation attached to schedule
delays of the passenger who is just scheduled for departure during
the peak period at the welfare optimum. On the other hand, time
valuations attached to congestion delays have no effect on the
welfare-optimal peak toll structure simply because there is no
congestion in the welfare optimum.12

For the case of elastic demands, it is shown that the welfare-
optimal peak tolls can achieve the first-best welfare result and
airport cost recovery when the schedule parameter is sufficiently
high. This is true in spite of the fact that the off-peak period

5 The bottleneck model with stochastic queues was further used by Daniel
and Harback (2008), who considered 27 major US airports and also found that
carriers may be treated as atomistic independent of whether a dominant carrier
exists or not, and by Daniel and Harback (2009) and Daniel (2011) for the
derivation of welfare-optimal airport congestion tolls for US and Canadian airports,
respectively.

6 Vickrey (1969) originally developed the deterministic bottleneck model with
fixed demands for the case of roads, where schedule delays costs are linear and
increasing in the absolute difference between the most preferred and actual travel
times. Daniel and Pahwa (2000) applied the results derived for roads in their
airport study. Silva et al. (2013) also adapted the bottleneck approach to the case of
airports, but explicitly accounted for the vertical structure between airports and
airlines. Furthermore, they incorporate elastic demands in the way developed for
roads by Arnott et al. (1993).

7 Airport congestion pricing with carriers competing in a Bertrand fashion is
considered by Silva and Verhoef (2013).

8 Mayer and Sinai (2003) also provide empirical evidence that supports the
finding that carriers internalize self-imposed congestion. Morrison and Winston
(2007) find little evidence for self-internalization. Rupp0s (2009) empirical findings
on the same issue are mixed. See Zhang and Czerny (2012) for a recent survey
paper that discusses airport congestion pricing.

9 Following Daniel (1995), it is assumed that arrival and departure queues are
independent. The analysis can thus concentrate on departures, which is without
loss of generality.

10 As was pointed out by Basso and Zhang (2008) this is not a crucial
assumption.

11 To be precise, average capacity costs refer to capacity costs divided by the
peak capacity.

12 Since passengers see peak-period departures as a “high quality” service
relative to off-peak departures, this is consistent with the literature on the firms0

incentives for quality supply (for example, Spence, 1975; Sheshinski, 1976).
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consists of a carrier subsidy because the peak-period toll, which is
determined by the schedule parameter, is positive and therefore
increases revenues.13

We further investigate a uniform-toll regime, where the same toll
is charged during the peak and off-peak periods. The analysis shows
that there are two types of welfare-optimal uniform tolls, which will
be referred to as the high uniform-toll and the low uniform-toll, both
of which are strongly related to carrier market power. The high
uniform-toll becomes relevant when passengers exhibit a strong
preference for peak trip, which means that at the second-best
welfare optimum, which is conditional on the uniform toll being
charged, all passengers are scheduled for departure during the peak
period (this can occur when the schedule parameter is sufficiently
high). In this scenario, the welfare-optimal uniform toll consists of a
carrier subsidy element and a term that corrects for external
schedule delay and congestion delay costs. The low uniform-toll
becomes relevant when passengers exhibit a low preference for peak
departure, which means that at the second-best welfare optimum
passengers are scheduled for departure during both the peak and off-
peak periods (this can occur when the schedule parameter is
sufficiently low). In this scenario, the welfare-optimal uniform toll
consists of a carrier subsidy element only. Furthermore, we find that
an increase in carrier market power can lead to an increase in
welfare. This is true because an increase in market power increases
the incentive for self-internalization and reduces the peak-passenger
quantity and congestion in the case of a low uniform-toll. In the case
of a high uniform-toll, changes in carrier market power do not
change welfare at all. This is because, in this case, congestion costs
depend only on the welfare-optimal aggregate passenger quantity,
which is independent of carrier market power. This further implies
that the “critical” value of the schedule parameter (where the welfare
achieved under both the low and the high uniform-toll is the same)
increases in carrier market power. Clearly, airport cost recovery may
only be achieved under the high-toll regime.

The paper is organized as follows. Section 2 describes the basic
model, which involves fixed passenger quantities faced by carriers and
a peak airport-toll structure. Section 3 analyzes different carrier
market structures including monopoly and oligopolistic carrier market
structures as well as the Stackelberg leader/competitive fringe struc-
ture. This section also considers an extension of the basic model to
multiple passenger types with distinct time valuations for schedule
delay and congestion delay costs. The case of elastic trip demands is
examined in Section 4. Section 5 concentrates on a uniform-toll
structure and uses an example to investigate the relative welfare
effects of both the high and low uniform-toll regimes. Section 6
provides conclusions and discusses avenues for future research.

2. Basic model

Our basic model considers n symmetric carriers, each with
given passenger quantities denoted as qi, which gives aggregate
passenger quantity q� nqi.

14 There are two periods denoted as
t ¼ p; o: the passengers0 preferred departure time is during period 1,
to be referred to as the peak period with t¼p. Period 2 is called the
off-peak period with t¼o. Gross benefits are the same for all
passengers and denoted as μ. All passengers prefer departing
during the peak period to departing during the off-peak period
in the sense that they experience a cost δð40Þ when they depart
during the off-peak period (i.e., per-passenger benefits of off-peak
departures are μ�δ). The parameter δ can have the interpretation

of a “schedule delay” cost (simply called schedule parameter in the
following), since it determines the passengers0 costs when the
actual travel time is not within the passengers0 most preferred
travel time, which is the peak period. In transport economics,
schedule delays are typically derived from the absolute difference
between the actual and most preferred travel times. In the present
paper, the differences between the preferred and actual departure
times are not uniquely defined because passengers prefer to travel
during peak hours, while they are indifferent with respect to the
exact departure time inside the peak period. Similarly, if passen-
gers depart during the off-peak period, then benefits are indepen-
dent of when departure occurs inside the off-peak period.

The airport capacity during the peak period is limited and given
by k.15 Normalizing the length of the peak period to one and
letting T denote the length of the off-peak period, assume that
T4q=k, which ensures that all passengers could potentially be
accommodated during the off-peak period.

Denote carrier i0s passenger quantities scheduled for the peak
period (called “peak supply”) by qpi and the passenger quantities
scheduled for the off-peak period (called “off-peak supply”) by qoi.
The aggregate peak supply is qp �∑iqpi, whereas the aggregate
off-peak supply is qo �∑iqoi with ∑tqti � qi.

If aggregate peak supply is below peak capacity (i.e., qprk), there
is no congestion because carriers avoid overlap in the scheduled
departure times (there is no incentive for overlaps because passen-
gers are indifferent with respect to departure times inside both the
peak and off-peak periods). On the other hand, if qp4k, some
passengers scheduled for peak departure are diverted to the off-peak
period by congestion with (expected) individual delays, denoted as C,
with C � CðqpÞ and C ¼ C0 ¼ 0 when qprk, while C040 and
C″Z0 when qp4k, which means that individual delays are a convex
function of peak supply.16 Note that individual delays depend on the
peak supply, which means that every passenger scheduled for peak
departure causes congestion even though some of these passengers
are diverted to the off-peak period.

Without loss of generality, it is further assumed that congestion
costs are borne by passengers with positive and uniform time valua-
tions v.17 Passengers scheduled for peak departure do not know ex ante
when they are supposed to depart during the peak period, which
means that expected congestion costs are the same for all passengers
and given by vC. Total congestion costs can be calculated as qpvC.

A novel feature, that distinguishes the present model from the
previous POP models (for example, Brueckner, 2002; Basso and
Zhang, 2008), is that it captures the probability that passengers
who are scheduled for peak-period departure actually depart
during peak hours because of congestion. This probability is
denoted as P with P � PðqpÞ and may be less than one, which
depends on peak supply:

Assumption 1. For passengers who are scheduled for departure
during peak hours, it holds that the probability that they actually
depart during peak hours is PðqpÞ �minf1; k=qpg.

Thus, if the aggregate peak supply is sufficiently small (qprk),
there is no congestion and all passengers can actually be accom-
modated during the peak period (that is, P¼1). If the aggregate
peak supply exceeds the peak-period capacity, there is a positive
probability (given by 1�P) that some of these passengers are

13 That welfare-optimal airport congestion tolls incorporate a subsidy element
when carriers have market power has first been pointed out by Pels and Verhoef
(2004).

14 The case of elastic travel demands will be examined in Section 4.

15 Thus, peak capacity is determined by factors outside of the model.
16 One way of thinking about how the passengers who are scheduled for peak

departure are diverted to the off-peak period is by queuing with the random queue
discipline (rather than the first-in-first-out queue discipline). Arnott (2013) uses
the random queue discipline for the case of roads.

17 Since congestion costs are separable from other costs, the assumption that
congestion costs are fully borne by passengers (and not by carriers) is without loss
of generality.
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diverted to the off-peak period because of delays (in this situation,
P0o0). However, the aggregate passenger quantity served during
the peak period is constant and equal to capacity qpP ¼ k in this
situation (qpZk). Assumption 1 further implies that P0 is the same
for all carriers, which is useful for deriving symmetric solutions.

Altogether there are three groups of passengers: (1) passengers
who are scheduled for peak departure and depart during peak
hours, (2) passengers who are scheduled for peak departure but
depart during off-peak hours, and (3) passengers who are sched-
uled for off-peak departure. Passengers cannot affect C as indivi-
duals are atomistic, and because passengers in the first group
experience no schedule delays but congestion, equilibrium prices
become μ�vC. Passengers in the second group experience both
schedule delays and congestion delays, which means that the
benefits become μ�δ�vC in this group, while they receive a
penalty payment δ by carriers when carriers do not provide the
right quality in terms of departure times.18 All passengers sched-
uled for peak departure therefore ultimately pay the same price
independent of whether they depart during peak or off-peak
hours. Passengers in the third group experience schedule delay
only and no congestion, which leads to equilibrium prices μ�δ.
Passengers are indifferent between peak and off-peak departures
in this scenario.

The airport charges carriers with a per-passenger fee τp for
departure during the peak period with τprδ in order to ensure
that peak supply is attractive for carriers. In the current setting of
given aggregate passenger quantities qi for each carrier, we can
normalize the airport charge for off-peak departures to zero,
which is without loss of generality. Other carrier costs are also
normalized to zero. Carrier i0s expected profit for given quantities
of passengers scheduled for peak-period departure can then be
written as

πi � ðμ�δÞqiþððδ�τpÞPðqpÞ�vCðqpÞÞqpi: ð1Þ

The first term on the RHS of (1) assumes that all passengers are
charged with the off-peak fare μ�δ, but passengers who are
scheduled for peak departure and who actually depart during -
peak hours (the corresponding quantity can be calculated as qpiP)
yield extra per-passenger profit δ�τp, which is captured by the
second term and becomes zero if τp ¼ δ. Furthermore, all passen-
gers scheduled for peak departure experience congestion costs
independent of whether they depart during the peak or the off-
peak period, which reduce peak prices and therefore appear as
carrier costs given by qpivCðqpÞ in the last term.

Airport profit can be written as

Π � qpPτp�ρ; ð2Þ

where the second term on the RHS of (2) denotes the airport0s
capacity costs. Social welfare can then be written as

W � μq�ðq�minfk; qpgÞδ�qpvC�ρ; ð3Þ

where the first term on the RHS of (3) determines the (gross)
benefits, the second term captures the schedule delay costs of
passengers who depart during off-peak, the third term represents
the congestion costs, while the last term are the capacity costs.

Let qn
p denote the welfare-optimal solution (i.e., qn

p ¼ arg
maxqp W). Since the passenger quantities are given, total surplus
is maximized when the sum of schedule delay and congestion
costs are minimized. This holds true when aggregate peak supply
is exactly equal to the peak capacity, i.e., qn

p ¼ k, because in this
situation peak capacity is fully used and there is no congestion.

We consider a two-stage game: in the first stage, the airport
chooses the optimal peak toll τp. In the second stage, carriers

simultaneously choose the shares of passengers scheduled for
departures during the peak period in order to maximize their own
profits.

3. Analysis

The analysis in this section first concentrates on a monopoly
carrier and then considers the more general framework of an
oligopolistic carrier market. Extensions of the basic model that
capture the existence of a Stackelberg leader with a competitive
fringe and passenger types with distinct time valuations attached
to schedule delays and congestion delays are also considered.

3.1. Monopoly carrier

Consider a monopoly carrier (n¼1) with q14k.19 In this case,
the carrier profit can be written as

π1 ¼
ðμ�δÞq1þqp1ðδ�τpÞ for qp1ok
ðμ�δÞq1þðδ�τpÞk�qp1vCðqp1Þ for qp1Zk:

(
ð4Þ

The monopoly carrier0s scheduling behavior in terms of peak
supply is determined by the first-order condition ∂π1=∂qp1 ¼ 0.
Note that

∂π1

∂qp1
¼

δ�τp for qp1ok

�vC�qp1vC
0 for qp1Zk;

(
ð5Þ

which is equal to zero only if qp1 ¼ k, thus implying qMp1 ¼ k

(superscript M indicates the monopoly solution). One can easily
check that the second-order condition is satisfied for qMp1 ¼ k, since

∂ðvCþqp1vC
0Þ=∂qp140 due to the convexity of delays C.

Thus, there is no need to correct the monopoly carrier0s
behavior when there is a peak period with limited capacity, since
the carrier perfectly internalizes schedule delay and congestion
costs and so maximizes welfare. In other words, the monopoly
carrier will not schedule an excessively high quantity of passen-
gers for departure during the peak period relative to the peak-
period capacity.

To summarize:

Proposition 1. For a monopoly carrier and given aggregate passen-
ger quantity, any airport charge can implement the welfare-optimal
solution, i.e. τnprδ (where the asterisk indicates the welfare-optimal
solution).

Thus, a zero toll charged to the monopoly carrier during the
peak period can implement the welfare-optimal solution, since
δ40. To ensure airport cost recovery, it may however be useful to
consider a positive peak toll, where the maximum revenues
conditional on welfare optimality are given by kδ (when the off-
peak toll is zero). It thus holds:

Proposition 2. The welfare-optimal solution ensures airport cost
recovery if the per-passenger schedule delay cost exceeds average
capacity costs, i.e. δZρ=k, when there is a monopoly carrier and the
passenger quantity is given.

Altogether, this complements the findings of Silva et al. (2013),
who derive monopoly carrier behavior in a deterministic bottle-
neck framework. Specifically, the contribution is to derive and
analyze the first-order condition in (5), which is directly informa-
tive with respect to the full range of optimal tolls in the case of a
monopoly carrier and to derive conditions for airport-cost recov-
ery when peak capacity is arbitrary in size.

18 Our main results do not hinge upon this assumption, however. 19 The case of q1rk is less interesting in our context.
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3.2. Oligopolistic carriers

More generally, assume that nZ1, that is, there can be an
oligopolistic carrier market. Consideration of oligopolistic markets
is used to analyze the relationship between scheduling behaviors
and market shares. For example, it is well known that the
incentives to internalize self-imposed congestion are inversely
related to market shares when carriers compete in quantities a
la Cournot (e.g., Brueckner, 2002; Zhang and Zhang, 2006). The
main contribution here is to show that a similar logic can be
applied to schedule delays.

To analyze the potential for self-internalization of the conges-
tion and schedule delay costs by oligopolistic carriers (when
passenger quantities are given in our basic model), assume that
qiok while nqi4k for n41. Using profits in (1), the carrier
behavior is determined by the first-order conditions ∂πi=∂qpi ¼ 0
(noting that the second-order conditions hold; see the discussion
in Footnote 20). With symmetry, the first-order conditions reduce
to

ðδ�τpÞP�vCþ1
n
ððδ�τpÞP0 �vC0ÞqNp ¼ 0; ð6Þ

where i¼ 1;…;n and superscript N indicates the Nash equilibrium
solution. In order to derive equilibrium carrier behavior, it is useful to
distinguish the two cases where (i) aggregate peak supply may be less
than peak capacity in equilibrium (i.e., qNp ok) and (ii) aggregate peak
supply may exceed peak capacity in equilibrium (i.e., qNp Zk).

Consider case (i). This implies P0 ¼ C 0 ¼ C ¼ 0, which means that
the first-order condition in (6) reduces to δ�τp ¼ 0; thus, this is a
solution only if τp ¼ δ. On the other hand, if τpoδ, case (i) cannot
be an equilibrium solution because the schedule parameter
exceeds the peak-charge, which means that an increase in peak
supply increases carrier profit.

Now consider the more interesting case (ii), where the peak
supply exceeds the peak capacity in equilibrium: using �qpP

0 ¼ P
and rearranging the terms in (6) leads to20

ðδ�τpÞP�vC�1
n
ðqNp vC0 þðδ�τpÞPÞ ¼ 0: ð7Þ

The first two terms give the (expected) extra profit from peak
relative to off-peak supply. The last two terms on the LHS are
negative and weighted with market shares. The first of these two
terms, qNp vC

0=n, determines the internalization of self-imposed
congestion, while the second, ðδ�τpÞP=n, is the novel part discovered
by the present analysis. This newly identified part determines the
internalization of self-imposed schedule delay costs.

Consider congestion first. The marginal effect of peak passen-
gers on congestion costs is given by the first derivative of
congestion costs, qpvC, with respect to peak supply, which yields
vCþqpvC

0. Note that the first term is internalized by carriers
because it determines the extra profit from the peak relative to
off-peak supply. The second term also appears on the LHS of (7),
but is weighted by market shares 1/n. Thus carriers increasingly
internalize marginal congestion costs when carrier market power
rises, as they recognize they impose congestion on themselves.
Such internalization reduces equilibrium peak supply relative to
an atomistic carrier market with an infinite number of carriers.

Turning now to schedule delays, the marginal effect of peak
departures on the aggregate carrier profit is given by the first
derivative of the aggregate extra profit from the peak relative to off-
peak supply, ðδ�τpÞqpP, with respect to peak departures. This

derivative can be written as ðδ�τpÞP�ðδ�τpÞ P ¼ 0 for qpZk
(again, we use the fact that �qpP

0 ¼ P in this situation). If τp ¼ δ this
marginal effect clearly is zero; while this marginal effect must also be
zero for τpoδ because an increase in peak supply cannot reduce
aggregate schedule delays once peak supply exceeds peak capacity.
Furthermore, the first term on the LHS, ðδ�τpÞP, is fully internalized
by carriers because it determines the extra profit from the peak
relative to off-peak supply, while the second term on the LHS,
�ðδ�τpÞP, appears on the LHS of (7) weighted with market
shares 1/n. Thus, oligopolistic carriers increasingly internalize the
marginal gains in aggregate extra profits, which are zero, when carrier
market power rises. The intuition is that carriers recognize that they
impose schedule delays on themselves in the sense that an increase in
peak supply pushes their own passengers scheduled for peak depar-
ture to the off-peak period, and the probability for this to occur
depends on market shares.

Altogether, this leads to an interesting difference between the
congestion and schedule delay costs: with congestion, carriers
may not account for marginal costs that are relevant from the
social viewpoint. With schedule delay costs, on the other hand,
carriers may account for some reductions in schedule delay costs,
which are non-existent from the social viewpoint.

The LHS of (7) is also informative with respect to the welfare-
optimal peak toll, which can implement the first-best solution.
This toll is essentially the same as the Vickrey-toll (Vickrey, 1969)
and equals the schedule delay costs, which are determined by the
schedule parameter δ in the present paper. To see this, note that
only τp ¼ δ eliminates the incentives to increase or decrease the
peak supply when the peak-period capacity is reached. Thus, the
welfare-optimal peak toll is unique and given by τnp ¼ δ for all
nZ2. (While τnp ¼ δ also is a solution for n¼1, it is not the unique
solution when n¼1.) The intuition is similar as the one for roads: a
welfare-optimal peak toll (which is equal to the schedule delay
costs) implies that carriers are indifferent between the peak and
the off-peak supply when there is no congestion; consequently, it
eliminates any incentives for an excessive use of peak capacity
because this will impose additional congestion costs. Importantly,
this is consistent with the full utilization of peak capacity: since
carriers are indifferent between the peak and off-peak departures
when τp ¼ δ, one can assume that carriers make a full use of peak
capacity. There are however multiple equilibria in this situation,
and the under-supply of peak services (i.e., qNp ok) would also be
an equilibrium solution for τp ¼ δ.21

Furthermore, this shows that although there is self-internalization
of the congestion and schedule delay costs, the welfare-optimal peak
toll is not affected by market structure and the existence of self-
internalization when nZ2. The reason is that the welfare-optimal toll
eliminates peak-period congestion. If congestion would be present at
the optimum, the equilibrium level of congestion and schedule delay
costs would clearly depend on market structure, and hence the size of
the toll would show this dependence as well. But with no congestion
present at the optimum, this dependence is not present.

To summarize:

Proposition 3. There is internalization of self-imposed costs of both
congestion and schedule delay when aggregate passenger quantities are
given, which depends on market power in the sense that the inter-
nalization of self-imposed delays (whether these are congestion or
schedule delays) increases in carrier market power. Still, the welfare-
optimal peak toll is independent of carrier market power when carrier
markets are oligopolistic and passenger quantities are given.

20 One can show that ∂2πi=∂q2pio0 is true for qp4k, and that the slopes of
carriers0 best-response functions implied by their first-order condition (6) are
strictly less than one in absolute values for τpoδ. Taken together, these properties
ensure the existence of a unique carrier equilibrium for τpoδ.

21 A peak charge τp ¼ δ�ε with ε-0 can ensure that peak capacity is fully
used with congestion costs arbitrarily close to zero.
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This extends the recent airport congestion literature (which shows
that carriers with market power have an incentive to internalize
self-imposed congestion costs) to the self-internalization of both the
congestion and schedule delay costs. Furthermore, a relevant policy
conclusion is that the “atomistic toll,” which is given by the welfare-
optimal peak toll for an infinite carrier number, implements the first-
best solution also when carriers have market power. This directly
follows from the fact that the welfare-optimal peak toll is independent
of carrier market power when quantities are given.

This further implies:

Corollary 1. Airport-cost recovery is unaffected by the existence of
an oligopolistic market relative to a monopoly situation when
aggregate passenger quantities are given.

3.3. Stackelberg leader with competitive fringe

We now modify the carrier market structure from monopoly/
oligopoly to a Stackelberg leader with competitive fringe. As a
consequence, the Stackelberg leader (represented by index 0) first
chooses its peak supply, qp0, which is followed by the fringe
carriers0 scheduling of peak departures, qpi for i40, taking the
leader0s peak supply as given.

To identify the effect of a competitive fringe on the Stackelberg
leader0s incentives to internalize self-imposed congestion and
schedule delay costs, it is sufficient to derive the comparative-
static relationships between the fringe carriers0 peak supplies and
the Stackelberg leader0s peak supply, which follows Zhang and
Czerny0s (2012) approach.22 Assuming that the fringe carriers0

peak supplies are determined by the first-order conditions in (6)
with qp �∑n

i ¼ 0qpi (which means that aggregate peak supply is
composed of the Stackelberg leader0s and the fringe carriers0 peak
supplies), the comparative-static relationships between the fringe
carriers0 peak supplies and the Stackelberg leader0s peak supply
can be derived by totally differentiating this first-order condition
with respect to the fringe carriers0 peak supplies and the Stackel-
berg leader0s peak supply. Using symmetry, this yields

∂2πi

∂q2pi
þðn�1Þ ∂2πi

∂qpi∂qpj

 !
dqNpiþ

∂2πi

∂qpi∂qp0
dqp0 ¼ 0 ð8Þ

with ja i. Since ∂2πi=∂qpi∂qpj ¼ ∂2πi=∂qpi∂qp0 for ja i and i¼ 1;…;n,
this leads to

dqNp
dqp0

¼ �n
∂2πi=∂qpi∂qp0

∂2πi=∂q2piþðn�1Þ∂2πi=∂qpi∂qp0
; ð9Þ

where

∂2πi

∂q2pi
¼ 2ððδ�τpÞP0 �vC0ÞþqNpiððδ�τpÞP″�vC″Þ ð10Þ

∂2πi

∂qpi∂qp0
¼ ðδ�τpÞP0 �vC0 þqNpiððδ�τpÞP″�vC″Þ: ð11Þ

This reveals that when there is a competitive fringe (i.e., when
n-1), the RHS of Eq. (9) approaches �1, which eliminates the
Stackelberg leader0s incentive for the internalization of self-
imposed congestion and schedule delay costs. The optimal (non-
discriminating) peak toll, which eliminates the fringe carriers0

incentives to move into the peak period and reaches the first-best
solution, is therefore τnp ¼ δ. Thus:

Proposition 4. If there is a competitive fringe:

(i) A Stackelberg-leader will not internalize self-imposed congestion
and schedule delay costs.

(ii) The unique, non-discriminating welfare-optimal peak toll is
unchanged by the existence of a Stackelberg leader relative to
an oligopoly situation when aggregate passenger quantities are
given.

This directly implies:

Corollary 2. Airport-cost recovery is unaffected by the existence of a
Stackelberg leader with a competitive fringe relative to a monopoly or
an oligopoly situation, respectively, when aggregate passenger quan-
tities are given.

The non-internalization result is consistent with the findings of
Daniel (1995), Brueckner and van Dender (2008) and Silva et al.
(2013). Furthermore, if the airport could charge differentiated tolls
to the Stackelberg leader and fringe carriers, a positive toll τnp ¼ δ
could be charged to fringe carriers, while it may be sufficient to
charge the Stackelberg leader with a reduced toll that is smaller
than the value of the schedule parameter. The reason is that the
fringe carriers0 toll τnp ¼ δ eliminates the fringe carriers0 incentives
to use the peak period, while the Stackelberg leader may schedule
passengers during the peak period but has no incentives to exceed
the peak-period capacity and induce congestion because of the
internalization of self-imposed schedule delay and congestion
costs. This effect has already been pointed out by Silva et al.
(2013). It can be easily shown that there is scope for the
internalization of self-imposed schedule and congestion delays
when carrier services are differentiated (e.g., Brueckner and van
Dender, 2008; Zhang and Czerny, 2012; Silva et al., 2013).

3.4. Passenger types

Empirical evidence shows clearly that passenger types with
distinct time valuations exist, where time valuations can be
associated with schedule or congestion delays. Specifically, the
time valuation of business passengers typically exceeds that of
leisure passengers.23 Accordingly, denote the carriers0 (given)
quantities of business passengers as qi

B and the corresponding
quantities of leisure passengers as qi

L, with qBi þqLi � qi. Further-
more, denote the aggregate quantities of business and leisure
passengers as qB and qL, respectively, with qB � nqBi and qL � nqLi .

We start with the consideration of distinct time valuations
attached to schedule delays. Assume that, for peak departures
relative to off-peak departures, the schedule parameter is δB for
business passengers and δL for leisure passenger with δLoδB and
that the time valuations associated with congestion delays are the
same for the two passenger types. Assume further that carriers
can price discriminate between the two groups, which means that
fares for business passengers during the off-peak period become
μ�δB while the corresponding fares for leisure passengers become
μ�δL.24 Letting qpi

B and qpi
L denote, respectively, the business and

leisure peak supplies with qBpiþqLpi � qpi, the expected aggregate
peak departures of business and leisure passengers can be calcu-
lated as qBpP and qLpP, respectively. Furthermore, it is useful to
denote average schedule delays as δ i with δ i � ðqBpiδ

BþqLpiδ
LÞ=qpi.

22 In contrast to the present paper, Zhang and Czerny (2012) consider a static
model of airport congestion.

23 Business passengers have a greater value of time than leisure passengers
(for example, Morrison, 1987; Morrison and Winston, 1989; USDOT, 1997;
Pels et al., 2003).

24 Airport congestion pricing and third-degree airline price discrimination with
elastic demands has been considered by Czerny and Zhang (2012) in a static
environment.
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Expected carrier profits then become

πs
i � μs

i þðδ i�τpÞqpiP�qpivC; ð12Þ

where μs
i � μqi�qLi δ

L�qBi δ
B and superscript s indicates the sce-

nario of distinct time valuations for schedule delays.
Airport profits are not directly affected by the changes in this

section relative to the basic scenario, since peak charges are
uniform over passenger groups. Expected welfare can be written
as

Ws � μsþðδP�vCÞqp�ρ; ð13Þ

where μs � nμs
i and δ � ðqBpδBþqLpδ

LÞ=qp. Business passengers clearly
have priority from the social viewpoint, which yields welfare-optimal
peak supplies qBnp ¼minfk; qBg and qLnp ¼ maxf0; k�qBnp g.

The carriers0 problems are to maximize their profit for the
given quantities of business and leisure passengers, which means,
again, the minimization of schedule delay and congestion delay
costs. Formally, the carriers0 maximization problems can be
written as

maxqLpi ;qBpi π
s
i s:t: qLpirqLi and qBpirqBi : ð14Þ

It is useful to distinguish the two cases where (i) the aggregate
business-passenger quantity exceeds the peak-period capacity
(qB4k), and (ii) the aggregate business-passenger quantity does
not exceed the peak-period capacity (qBrk). Note that δLoδB

implies that the marginal carrier profits derived from business
peak supply are greater than the corresponding marginal profits
derived from leisure peak supply (∂πs

i =∂q
L
pio ∂πs

i=∂q
B
pi). Thus, if the

aggregate business quantity exceeds the peak-period capacity
(case (i)), the welfare-optimal peak toll is determined by the peak
passengers0 schedule parameter in order to eliminate the excessive
use of the peak-period capacity. Leisure passengers will not be
scheduled for peak-period departure in this situation.

The more interesting case is case (ii). Here, all business
passengers are scheduled for peak departure and the carriers
decide upon the additional leisure peak supply. In this case, the
leisure peak supplies are determined by the first-order conditions
∂πs

i =∂q
L
pi ¼ 0, which implies

ðδL�τpÞP�vC�1
n
ðqpvC0 �qpðδ i�τpÞP0Þ ¼ 0: ð15Þ

The first two terms on the LHS of Eq. (15) give the extra profit from
peak relative to off-peak supplies. The subsequent terms show that
carriers internalize self-imposed congestion and schedule-delay
costs, both of which depend on market shares.

For case (ii), one can show that ∂2πs
i=∂ðqLpiÞ2o0 and that best-

responses in terms of the leisure passenger peak supplies have
slopes less than one in absolute values when the leisure schedule
parameter is sufficiently large.25 There is thus a unique equili-
brium in this situation. Furthermore, since the optimal peak toll
eliminates congestion, the first-order condition displayed in (15)
directly reveals that the welfare-optimal peak toll is determined
by the leisure schedule parameter (i.e., τsp ¼ δL) in case (ii). The
discussion therefore leads to:

Proposition 5. When business passengers attach a high time
valuation to schedule delays relative to leisure passengers, the
welfare-optimal peak toll is determined by the business passengers0

schedule parameter if the aggregate business quantity exceeds the
peak-period capacity (i.e., qBZk); and it is determined by the leisure
passengers0 schedule parameter otherwise.

Since the departure time determines service quality, this result
is in line with the results derived by Spence (1975) and Sheshinski
(1976), who concentrated on a monopoly firm and found that the
firms0 quality choices depend on the quality valuation of the
marginal customer. In the above case (i), the marginal customer
is a business passenger at the welfare-optimum, while the mar-
ginal customer in case (ii) is a leisure passenger. Similar results
have been derived by Czerny and Zhang (2011, 2013) for the case
of airport congestion in a static environment, while Proposition
5 refers to the first-best peak toll in a POP environment.26

The implications for airport-cost recovery can be described as:

Corollary 3. When business passengers attach a high time valuation
to schedule delays relative to leisure passengers and the aggregate
business quantity exceeds the peak-period capacity, the welfare-
optimal peak toll ensures airport-cost recovery if the business
schedule parameter exceeds average capacity costs, i.e. δBZρ=k;
while the leisure schedule parameter must exceed average capacity
costs, i.e. δLZρ=k, in order to ensure airport-cost recovery otherwise.

Time valuations can depend on passenger types not only for
schedule delays but also for delays caused by congestion. However,
since congestion does not exist in the first-best solution, the welfare-
optimal peak toll and the corresponding effects on airport-cost
recovery are independent of differences in time valuations attached
to congestion delays by the business and leisure passengers. Thus, for
the derivation of the welfare-optimal peak toll and airport-cost
recovery, it is important to recognize the existence of passenger
types with distinct time valuations, with the differences with respect
to the valuations of schedule delays being of particular importance.

4. Elastic demands

The preceding analysis takes each carrier0s aggregate passenger
quantity as given. As a consequence, each carrier just decides on
peak supply and the airport just needs to decide on a peak toll τp.
To analyze elastic trip demands, we need to assume that the
airport charges an off-peak toll, denoted as τo, in addition to τp
with τp�τorδ in order to ensure that peak supply can be positive
in equilibrium. Further, we assume that the (gross) passenger
benefits, denoted as B, depend on the aggregate passenger
quantity, q, i.e. B� BðqÞ with B″o0. As in the basic scenario,
passengers prefer peak relative to off-peak departures in the sense
that aggregate schedule delay costs are given by ðq�minfk; qpgÞδ.

Let pp denote the peak fare and po the off-peak fare. The
passengers0 peak “full-fares” are then composed of the peak price
and congestion costs (i.e., the peak full-fares are ppþvC). Again,
the peak full-fares are independent of whether passengers sched-
uled for peak departure depart during the peak period or are
diverted to the off-peak period because peak passengers receive a
penalty payment δ if they are forced to depart during the off-peak
period by congestion. On the other hand, the full fares for off-peak
departures are composed of the off-peak fare and schedule delay
costs (i.e., the off-peak full-fares are poþδ). Consumer surplus can
be written as

CSeðq; qpÞ � B�ðppþvCÞqp�ðpoþδÞðq�qpÞ; ð16Þ

where qo is substituted by q�qp and e stands for “elastic.” The first
term is the gross passenger benefits. The second term is the peak

25 Specifically, δL4τpþðδ i�τpÞð1þ2=qpÞ=ðð1þ1=qpÞnÞ ensures that ∂2πs
i =∂q

L
pi∂q

L
pj is

strictly negative in sign.

26 It is noted that similar results can be derived for the case of horizontal
product differentiation. Assume, without loss of generality, that business passen-
gers only travel with carrier 1, while leisure passengers only travel with carrier 2.
This is a situation with horizontal product differentiation, which would leave the
results described by Proposition 5 unchanged.
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full fares multiplied by the aggregate peak supply, while the third
term is the corresponding term for off-peak supply.

Since passengers are atomistic, passengers consider average
congestion costs and the probabilities to depart during peak hours
as given. Differentiating the consumer surplus in (16) with respect
to aggregate quantities q and peak departures qp (for given values
of P and C), then yields demand equilibrium conditions po ¼ B0 �δ
and pp ¼ B0 �vC. It directly follows that full fares in peak and off-
peak periods must be the same in equilibrium (i.e., poþδ¼
ppþvC ¼ B0), which is intuitive.

Carrier profits can be written as

πe
i � B0qi�ðδþτoÞqiþððδ�ðτp�τoÞÞP�vCÞqpi: ð17Þ

The first term shows carrier revenues when congestion and
schedule delay costs would be zero. The second term shows the
carrier costs (composed of schedule delay costs and off-peak
airport charges) if all passengers are scheduled for off-peak
departure, while the final terms describe the profit gains from
peak supply (composed of expected reductions in schedule delay
costs, congestion costs and expected extra payment for airport
infrastructure use during peak hours). We focus on scenarios
where the equilibrium passenger quantities are sufficiently high
to ensure that some passengers are scheduled for off-peak
departure.27

Welfare can be written as

We � CSeþ∑
i
πe
i ð18aÞ

¼ B�ðq�minfk; qpgÞδ�qpvC: ð18bÞ

Letting superscript “en” indicate the welfare-optimal solution, the
welfare-optimal peak supply clearly equals peak capacity (i.e.,
qenp ¼ k) and the welfare-optimal aggregate passenger quantity is
reached when marginal benefits are equal to the schedule para-
meter (i.e., the welfare-optimal aggregate passenger quantity is
implicitly determined by B0ðqenÞ�δ¼ 0 for qen4k).

With elastic demands, carriers individually and simultaneously
choose quantities qi and qpi to maximize their profits (17). To
ensure a unique carrier equilibrium (for τp�τooδ), the following
(standard) assumption is made:

Assumption 2. For any q40, B″þqB‴o0.

This ensures that carriers0 passenger quantities are strategic
substitutes and the slopes of the carriers0 best-response functions
are strictly less than one in absolute values. These, together with
the second-order conditions and the fact that scheduling behavior
is unaffected by the aggregate passenger quantities as long as
some passengers, are scheduled for departure during the off-peak
period, ensure the existence of a unique Nash equilibrium of
airline rivalry for τp�τooδ.

To derive the basic intuition, a monopoly carrier (n¼1) is
considered first, again. Monopoly profit can be written as

πe
1 �

B0q1�ðδþτoÞq1þðδ�ðτp�τoÞÞqp1 for qp1ok

B0q1�ðδþτoÞq1þðδ�ðτp�τoÞÞk�vCqp1 for qp1Zk:

(
ð19Þ

The carrier0s behavior is determined by the first-order conditions
∂πe

1=∂q1 ¼ 0 and ∂πe
1=∂qp1 ¼ 0. Given that qp1oq1 in optimum, the

aggregate passenger quantity is determined by

B0 þB″qM1 �ðδþτoÞ ¼ 0; ð20Þ

which shows that the aggregate passenger quantity is reduced by
schedule delay costs relative to a situation with a peak capacity
that is sufficiently large to serve the entire demand. The partial
derivative with respect to the peak supply is

∂πe
1

∂qp1
¼

δ�ðτp�τoÞ for qp1ok

�vC�qp1vC
0 for qp1Zk;

(
ð21Þ

where qMp1 ¼ k is a solution as in the previous section with given
passenger quantities, since the first-line on the RHS is nonnega-
tive, while the second line is strictly positive for qMp14k. Again, the
monopoly carrier fully internalizes congestion and schedule delay
costs.

To derive the welfare-optimal off-peak toll, we use the fact that
B0 �δ¼ 0 in the welfare-optimum. The unique welfare-optimal
off-peak toll then directly follows from the first-order condition
in (20) and is given by τeno ¼ B″qen1 . The RHS is clear-cut and
negative in sign; the welfare-optimal off-peak toll therefore
establishes a carrier subsidy. The welfare-optimal peak-toll is not
unique. To see this, recall that the peak capacity should be fully
used but without causing any congestion at all. Since ∂πe

1=∂qp1Z0
for qp1rk when τprτoþδ, while ∂πe

1=∂qp1r0 for all qp1Zk, all
τprτeoþδ can implement the first-best result. Thus, to implement
the welfare-optimal solution, the off-peak toll is used as a subsidy,
while the peak toll needs to ensure that the peak capacity is fully
used; thus, τenp rB″qen1 þδ, where the RHS is positive in sign if the

schedule parameter is sufficiently high (i.e., if δ4�B″qen1 ).
Turning to oligopolistic carrier markets, the carriers0 behavior is

determined by the first-order conditions ∂πe
i =∂qi ¼ 0 and ∂πe

i =∂qpi
¼ 0, which can be written as

B0 þB″qNi �ðδþτoÞ ¼ 0 ð22Þ

and

ðδ�ðτp�τoÞÞP�vC�1
n
ðqNp vC0 þðδ�ðτp�τoÞÞPÞ ¼ 0: ð23Þ

Since full internalization of schedule delay and congestion delay
costs does not occur in this scenario when n41, the welfare-
optimal peak toll structure becomes unique and is given by

τeo ¼ B″qen=n and τep ¼ B″qen=nþδ: ð24Þ

As in the monopoly case, the aggregate passenger quantities qi are
not determined by the schedule delay and congestion delay costs,
while carriers trade-off the expected peak-toll payments against
the expected marginal schedule delay and congestion costs when
they determine the peak supplies.

This leads to:

Proposition 6. The welfare-optimal off-peak toll is a subsidy that
ensures achievement of the first-best passenger quantity when there
is carrier market power, while the welfare-optimal peak toll ensures
that peak capacity is fully used but without congestion.

The result of the welfare-optimal off-peak toll being a subsidy
has been shown by Basso and Zhang (2008), but the results on the
welfare-optimal peak toll are different between the two studies.
While Basso and Zhang found that the peak toll may even be
smaller than the off-peak toll, this will not happen in our model.
The difference arises largely due to the fact that we consider both
the schedule delay and congestion costs while they consider only
the congestion cost.

27 The condition holds when

ðδþτo�B0
oÞ=B″

o4 ððδ�ðτp�τoÞÞP�vCÞ=ðvC0 �ðδ�ðτp�τoÞÞP0Þ4k=n

is satisfied in equilibrium. The first inequality ensures that off-peak supply is
positive, while the second inequality ensures that peak supply exceeds peak-period
capacity in equilibrium.
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The welfare-optimal peak toll structure in (24) implies that
airport cost recovery can be achieved when

δZρ=k�B″ � ðqenÞ2=ðnkÞ: ð25Þ
The RHS shows that airport cost recovery may be more likely
when carrier competition increases (which is true whether there is
a Stackelberg leader or not). This is true because the subsidy
element incorporated in the welfare-optimal peak toll structure is
reduced by carrier competition, while the peak premium, which is
required to achieve the welfare-optimal solution, is independent
of the carrier market structure.

Thus28:

Proposition 7. If the schedule parameter is sufficiently high, the
welfare-optimal peak toll structure ensures airport cost recovery,
while airport cost recovery is easier to achieve if the carrier market is
more competitive, which is true in the sense described by the
inequality in (25).

5. Uniform tolls

Airport peak-toll structures can hardly be found in practice
(e.g., Schank, 2005). An important variation of the toll structure,
which is of high practical importance, is considered in this section.
More specifically, a “uniform toll” is considered, where the same
toll is charged during both the peak and off-peak periods, i.e.,
τp ¼ τo ¼ τu (u for “uniform”).29 The carrier profits then become

πu
i � ðB0 �ðδþτuÞÞqiþðPδ�vCÞqpi: ð26Þ

5.1. Welfare-optimal uniform toll

Consider n¼1. The previous discussion already showed that the
monopoly carrier need not to be incentivized to perfectly inter-
nalize schedule delay and congestion costs. In the case of a
monopoly carrier, the welfare-maximizing airport must only ensure
that the welfare-optimal aggregate quantity is achieved. Recall that
the optimal peak toll structure, which implements the first-best
solution, is given by (24). It directly follows that the uniform toll
τu ¼ B″qen can implement the first-best result when a monopoly
carrier exists. The optimal uniform-toll structure is more complex
when an oligopolistic market structure is considered.

Consider now nZ2. The carriers0 behavior is determined by the
first-order conditions ∂πu

i =∂qi ¼ 0 and ∂πu
i =∂qpi ¼ 0, which lead to

a unique carrier equilibrium. It is useful to distinguish between
two cases:

(i) qu ¼ qup , and
(ii) qu4qup ,

where superscript u indicates the equilibrium solution under
uniform tolls.

In case (i), the first-order conditions reduce to

B″qup=nþB0 �ð1�PÞδ�τu�vC�1
n
ðqupvC0 þPδÞ ¼ 0: ð27Þ

The first three terms on the LHS of (27) display marginal revenue,
while the rest of the terms display, respectively, the uniform toll,
the per-passenger congestion costs, and the part of congestion and

schedule delay costs for which internalization depends on market
shares. This shows that, in case (i), the aggregate passenger
quantity is determined by a trade-off between the marginal
revenues and the schedule delay and congestion delay costs.

In case (ii), the first-order conditions that determine the
carriers0 behaviors ∂πu

i =∂qi ¼ 0 and ∂πu
i =∂qpi ¼ 0 can be written

respectively as

B″qui þB0 �δ�τu ¼ 0 ð28Þ
and

Pδ�vC�1
n
ðqupvC 0 þPδÞ ¼ 0: ð29Þ

In this case, (28) implies that the aggregate passenger quantity is
independent of schedule delay and congestion delay costs, while
the peak passenger quantity is independent of the uniform toll as
implied by (29).

One can show that the following lemma, which is useful to
identify the welfare-optimal uniform tolls, holds true30:

Lemma 1. (i) The aggregate passenger quantity is decreasing in the
uniform toll and the schedule parameter, which is independent of
whether off-peak supply is absent or present. (ii) The aggregate peak
supply is decreasing in the uniform toll only if off-peak supply is
absent in equilibrium, while aggregate peak supply is independent of
the uniform toll otherwise. (iii) The aggregate peak supply is
increasing in the schedule parameter if off-peak supply is strictly
positive.

Since an increase in the uniform toll increases marginal carrier
costs, which is independent of peak and off-peak supply, it is
intuitive that the aggregate passenger quantity is decreasing in the
uniform toll. Furthermore, an increase in schedule delay costs
reduces off-peak demand. Since we concentrate on scenarios
where off-peak departures are always present (passengers are
scheduled for off-peak departure or they are diverted to the off-
peak period by congestion), it is also intuitive that the aggregate
passenger quantity is decreasing in the schedule parameter as
described in part (i) of Lemma 1. Part (ii) is directly intuitive, since
peak supply depends on uniform tolls only if off-peak supply is
zero. Finally, since schedule delay costs can be avoided by peak
departures relative to off-peak departures, peak departures may
be increasing in the schedule parameter, which provides an
intuition for part (iii) of Lemma 1.

To derive the welfare-optimal uniform toll, assume that the
peak capacity is fully used in equilibrium. Using welfare in (18b),
the welfare-optimal uniform toll is determined by the first-order
condition ∂W=∂q � ∂q=∂τuþ∂W=∂qp � ∂qp=∂τu ¼ 0, which implies

ðB0 �δÞ ∂q
∂τu

�ðvCþqunp vC0Þ∂qp
∂τu

¼ 0; ð30Þ

where superscript “un” indicates the welfare-optimal solution
under uniform tolls.

Case (i) implies ∂q=∂τu ¼ ∂qp=∂τuo0 by Lemma 1. In this case,
the first-order (30) can be rewritten as

B0 �δ¼ vCþqunp vC0; ð31Þ

which shows that the welfare-optimal uniform toll should equal-
ize the difference between marginal benefits and schedule delay
costs and marginal congestion costs. This toll is unique and
denoted as τuðHÞ, where H stands for high because the toll
eliminates the carriers0 incentives for off-peak supply (otherwise,
case (ii) would be the relevant one). Uniqueness results from the
fact that the aggregate passenger quantity is decreasing in the

28 For the discussion of airport cost recovery in the case of a deterministic
bottleneck model, see Silva et al. (2013). For the discussion of cost recovery in the
static airport congestion models, see Brueckner (2002) and Zhang and Zhang
(2006).

29 The concept of a uniform toll is common in the context of roads (e.g., Arnott
et al., 1993).

30 Lemma 1 follows almost immediately from Assumption 2, which together
with Assumption 1 implies ∂2πi=∂qi∂qjo0 for cases (i) and (ii).
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uniform toll, and the LHS of (31) is decreasing in the aggregate
passenger quantity, while the RHS of (31) is increasing in peak
supply (which is equal to the aggregate passenger quantity in case
(i)) by Lemma 1.

Case (ii) implies ∂qp=∂τu ¼ 0 by Lemma 1. In this case, the first-
order condition (30) can be rewritten as

B0 �δ¼ 0; ð32Þ

which shows that the uniform toll should be chosen such that the
difference between marginal passenger benefits and schedule
delay costs equal marginal cost of off-peak passengers, which are
normalized to zero. This toll is again unique and denoted as τuðLÞ,
where L stands for low because the toll ensures that off-peak
supply exists (otherwise, case (i) would be the relevant one).

Substituting vCþqpvC
0 for B0 �δ and 0 for B0 �δ in the first-

order conditions in (27) and (28) respectively, and solving for the
welfare-optimal uniform tolls leads to

τuðθÞ ¼
B″qun=n for θ¼ L;

B″qun=nþPδþqunp vC0 �ðqunp vC0 þPδÞ=n for θ¼H;

(
ð33Þ

where θ¼ L (called the “low-toll regime”) implies qunp oqun and
θ¼H (called the “high-toll regime”) implies qunp ¼ qun. Thus, the
welfare-optimal uniform toll always incorporates a carrier-subsidy
element, B″qun=n, which depends on carrier market power.
It incorporates a second element, Pδþqunp vC 0 �ðqunp vC0 þPδÞ=n, that
internalizes the external schedule delay and congestion delay costs
only if all passengers are scheduled for peak-period departure,
which also depends on carrier market power. However, in both
cases the first-best result cannot be achieved (when nZ2). This is
because in case (ii), the use of the peak-period capacity is
excessive, while in case (i) the use of the peak-period is also
excessive and, in addition, the aggregate passenger quantity is too
low from the social viewpoint.

To summarize:

Proposition 8. The welfare-optimal uniform toll incorporates a
carrier-subsidy element, which is independent of whether off-peak
supply is absent or present, while it incorporates an element that
internalizes the external schedule delay and congestion delay costs
only if the off-peak supply is absent in the welfare-optimum.
All elements of the welfare-optimal uniform toll depend on carrier
market power.

Clearly, airport cost recovery can only be achieved under the
high toll regime.

Although all elements of the welfare-optimal uniform tolls
depend on carrier market power, this is not always true for the
welfare effect of carrier market power. Specifically, carrier market
power has no welfare impact under the high-toll regime. Note that
the first-order condition in (31) controls both passenger benefits
and congestion delay cost. Furthermore, this trade-off does not
depend on carrier market power, since (31) should be satisfied for
all nZ2 when the high-toll regime is considered. This means that
welfare is independent of carrier market power under the high-
toll regime when nZ2.

On the other hand, an increase in carrier market power will
always increase social welfare under the low-toll regime. To see
this, note that the aggregate passenger quantity is independent of
carrier market power under the low-toll regime and is determined
by B0 �δ¼ 0. On the other hand, the incentive for the internaliza-
tion of schedule delay and congestion delay costs increases with
carrier market power. The following example is used to show that
this implies that the equilibrium peak supply decreases in carrier
market power (e.g., n¼1 implies qp ¼ k), which reduces average
congestion costs and increases welfare.

5.2. Example

The previous analysis showed that the airport may have to
choose between the low- and the high-toll regime. The question is,
what are the conditions that favor the use of the low- or high-toll
regimes? To show that the high uniform-toll may be preferred
from the social viewpoint when the schedule parameter, δ, is
sufficiently high, we introduce specific functional forms and
consider numerical instances with three and five carriers to
demonstrate the welfare effect of carrier market power. More
specifically, consider quadratic passenger benefits and linear per-
passenger congestion costs, which lead to

B¼ aq�q2=2 and C ¼maxf0; cðq�kÞ=kg ð34Þ
with co ða�kÞ=ð2vÞ and c40, where the first inequality ensures
that the congestion costs are sufficiently low in the sense that the
quantity of passengers scheduled for peak departures can exceed
peak capacity under the high-toll regime.

Recall that peak supply is increasing in the schedule parameter
under the low-toll regime and decreasing in the schedule para-
meter under the high-toll regime by Lemma 1. Assume that
δZϕ with

ϕ � vc
n�1

; ð35Þ

which ensures that peak supply exceeds peak capacity under the
low-toll regime for nZ2. Since quantities are increasing when
market power decreases, the lower limit, ϕ, is increasing in carrier
market power. To further ensure that peak supply exceeds peak
capacity under the high-toll regime, it is assumed that δrϕ with

ϕ � a�k�vc: ð36Þ
Altogether, δA ½ϕ;ϕ� with ϕ4ϕ40.

Equilibrium passenger quantities and welfare-optimal uniform
tolls are specified in Appendix A. Fig. 1 displays the welfare-
optimal high toll (regime θ¼H; solid lines) and low toll (regime
θ¼ L; dashed lines) for parameter specifications a¼2, k¼ v¼ 1,
c¼ 1=2 and for n¼3 and n¼5. This figure shows that the welfare-
optimal uniform tolls are always increasing in the schedule delay
cost δ, which is intuitive, since an increase in δ increases the
carriers0 incentives to schedule passengers for departure during
the peak period. Furthermore, one can show that in these
instances, aggregate passenger quantities are decreasing, while
airport profits are increasing in the schedule parameter, which is
true for the high- and the low-toll regime.

The associated welfares for regime θ¼H (solid line) and
regime θ¼ L (dashed lines) for n¼3 and n¼5 are displayed in
Fig. 2. This shows that the high uniform toll improves welfare
relative to the low uniform toll when schedule delay cost is
sufficiently high (i.e. for δc0:41). Fig. 2 further demonstrates

Fig. 1. The welfare-optimal uniform tolls for the relevant ranges of δ under the
high-toll regime (θ¼H; solid lines) and the low-toll regime (θ¼ L; dashed lines) for
n¼3, 5. Parameters: a¼2, k¼ v¼ 1 and c¼ 1=2.
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that an increase of carrier market power can improve welfare
under the welfare-optimal uniform-toll regime. To see this,
observe that welfare is higher when n¼3 relative to the welfare
that exists when n¼5 under the low-toll regime. This is because
carriers0 internalization of self-imposed schedule delay and con-
gestion delay is positively related to carrier market power (Pro-
position 3).

6. Concluding remarks

This paper has developed an airport POP model that captures
the fact that the peak departures cannot exceed the peak-period
capacity. The novel feature is that passengers scheduled for peak
departure may depart during the off-peak period with some
probability (which is decreasing in the aggregate peak supply).
This leads to three types of passengers: (1) passengers who are
scheduled for peak departure and depart during the peak period,
(2) passengers who are scheduled for peak departure but depart
during the off-peak period, and (3) passengers who are scheduled
for off-peak departure. This framework was used to analyze the
carriers0 incentive to internalize self-imposed schedule delay costs
in the sense that an increase in peak supply may turn own type-1
passengers into type-2 passengers.

The analysis revealed that there is internalization of both the
(self-imposed) schedule delay and congestion delay costs by
carriers with market power. Still, the welfare-optimal peak toll
structure is of the Vickrey type (i.e. it is determined by schedule
delay costs) and independent of carrier market power. It was also
shown that the existence of passenger types with distinct time
valuations has important implications for the welfare-optimal
peak tolls. This is because the carriers0 internalization depends
on the time valuation of the passenger who is just scheduled for
departure during the peak period.

Our investigation of a uniform-toll regime (where the same toll
is charged during peak and off-peak periods) showed that the
welfare-optimal uniform toll can be linked to carrier market
power in an important fashion. More specifically, the welfare-
optimal uniform toll would consist only of a carrier subsidy
element when the schedule delay cost is sufficiently low. In that
case, an increase in carrier market power improves welfare, since
this increases the incentive for self-internalization and reduces the
peak-passenger quantity and congestion. On the other hand, if the
welfare-optimal uniform toll consists of both a carrier subsidy
element and a term that corrects for external schedule delay and
congestion costs, then changes in carrier market power do not
affect welfare at all.

With respect to airport cost recovery, we derived results for the
case of an arbitrary size of the peak capacity. Specifically, we found
that airport cost recovery may be easier to achieve if, first,
passengers have a strong preference for peak departure and,
second, the carrier market becomes more competitive.

This paper has used some simplifying assumptions. First and
foremost, the analysis is restricted to two periods in the sense that
schedule delay cost can take only two values (zero or a positive
constant). The advantage is that this provides an easy-to-handle
framework, which can be used to analyze a variety of model
extensions, while the main results do not seem to hinge upon this
assumption. For example, this is true for the structure of the
welfare-optimal peak tolls, which is determined by schedule delay
costs,31 the internalization of self-imposed congestion and sche-
dule delay cost, the role of passengers types, and also the
distinction between high and low uniform toll regimes. The latter
implies that policy makers have to decide whether they prefer to
control congestion or the aggregate passenger quantity. A similar
problem would clearly also arise under more general assumptions
on the distribution of schedule delay cost as long as off-peak
periods with no congestion are present at the airport under
consideration. In order to derive practically implementable solu-
tions, more general assumptions on the distribution of schedule
delay costs, the stochasticity of demands, etc., would have to be
taken into account, while the simplifying approach in the present
paper is useful to enhance the transparency of the analysis and to
derive clear intuitions.32

The paper has also raised a number of avenues for future
research. First, a straightforward and important extension of the
model developed here is to consider an endogenous peak capacity
and to elaborate on the relationship between the revenues raised
by the welfare-optimal peak tolls and the costs of building the
welfare-optimal capacity. Second, while we have analyzed the
properties of both the peak/off-peak and uniform tolls, it is of
interest to further explore the magnitude of differences between
the two toll regimes in terms of (for example) carrier profits,
consumer surplus and social welfare.33 Third, in our analysis
carriers consider airport tolls as given while making their quantity
decisions. The case of manipulable tolls along the line of Brueckner
and Verhoef (2010) may be further analyzed. Finally, congestion
results in costs not only in terms of extra travel time but also in
terms of non-reliable travel (see Small, 2012, for a comprehensive
recent literature survey), an aspect that is abstracted away from
the present paper. Nonetheless, our framework of scheduled peak
passengers having probability of actually flying off-peak can be
adapted to analyze the reliability issue.
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Appendix A. Example: results

The equilibrium passenger quantities when there are peak and
off-peak passengers (regime L) can be derived as

qoiðLÞ ¼
2an�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2ðvcþ4δÞ�4δÞ=ðvcÞ

p
þn

� �
�2nðτuðLÞþδÞ

2bnðnþ1Þ ð37Þ

and

qpiðLÞ ¼
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2ðvcþ4δÞ�4δÞ=ðvcÞ

p
þn

� �
2nðnþ1Þ ð38Þ

for δZϕ, which ensures that nqpiðLÞZk. Furthermore, the equili-
brium passenger quantities when there are only peak passengers
(regime H, which implies qoiðHÞ ¼ 0) can be derived as

qpiðHÞ ¼
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2ða�δþvc�τuðHÞÞ2þ4δðn2�1ÞðkþvcÞÞ

q
þknða�δþvc�τuðHÞÞ

2nðnþ1ÞðkþvcÞ
ð39Þ

for

δran�kðnþ1Þ�nτuðLÞ�vc; ð40Þ
which ensures that nqpiðHÞZk (assume equality and solve for δ to
derive ϕ).

The airport chooses between uniform tolls τuðLÞ and τuðHÞ in
the first stage, which can be derived as

τuðθÞ ¼
�ða�δÞ=n for θ¼ L

Δ=ðnðkþ2vcÞðaþvc�δÞÞ for θ¼H:

(
ð41Þ

with

Δ� ðaþvcÞ2ðvcðn�1Þ�kÞ
þðkð2aþkðn�1ÞÞ�2vcðða�2ðvcÞ2Þðn�1Þ�kð2n�1ÞÞÞδ
�ðk�vcðn�1ÞÞδ2: ð42Þ

The associated welfare expressions can be derived by substituting
passenger quantities qxðθÞ with xAfoi;pig into welfare in (18b).
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