
MANAGEMENT SCIENCE
Vol. 61, No. 2, February 2015, pp. 413–430
ISSN 0025-1909 (print) � ISSN 1526-5501 (online) http://dx.doi.org/10.1287/mnsc.2014.1962

© 2015 INFORMS

Macroeconomic Volatilities and Long-Run
Risks of Asset Prices

Guofu Zhou
Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130, CAFR and CUFE, zhou@wustl.edu

Yingzi Zhu
School of Economics and Management, Tsinghua University, 100084 Beijing, China, zhuyz@sem.tsinghua.edu.cn

In this paper, motivated by existing and growing evidence on multiple macroeconomic volatilities, we extend
the long-run risks model by allowing both a long- and a short-run volatility components in the evolution of

economic fundamentals. With this extension, the new model not only is consistent with the volatility literature that
the stock market is driven by two, rather than one, volatility factors, but also provides significant improvements in
fitting various patterns, such as the size of market risk premium, the level of interest rate, degree of dividend yield
predictability, and the term structure of variance risk premiums, of both the equity and option data.

Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2014.1962.

Keywords : long-run risks; stochastic volatility; predictability; variance risk premium; VIX term structure
History : Received April 15, 2013; accepted March 15, 2014, by Jerome Detemple, finance. Published online in

Articles in Advance September 25, 2014.

1. Introduction
In macroeconomics and finance literature, a central
question is how macrofluctuations and market volatil-
ity affect the economy and asset prices. Since the
early consumption-based asset pricing models of Lucas
(1978) and Breeden (1979), the long-run risks model
of Bansal and Yaron (2004; henceforth, BY) seems
another major advance in this direction. In the BY
model, persistent movement in volatility of aggre-
gate consumption is introduced and shown to drive
the conditional volatilities and risk premia of asset
returns. There are subsequently many studies, such as
Bansal et al. (2005; 2007b, c; 2009; 2012; 2014), Eraker
(2008), Hansen et al. (2008), Pakoš (2008), Avramov and
Hore (2009), Chen et al. (2009), Beeler and Campbell
(2012), Constantinides and Ghosh (2011), Drechsler and
Yaron (2011), Bansal and Shaliastovich (2013), Ferson
et al. (2013), and Johnson and Lee (2014), that have
shown that the long-run risks channels can success-
fully account for a number of features of the data,
such as size of market risk premium, unconditional
levels and volatilities of asset prices, predictability of
return levels and volatilities by asset valuations, and
a host of empirical facts in equity, bond, and option
markets. However, the original BY model assumes a
single variance state variable, which proportionally
affects the short and long-run consumption innovations.
An immediate implication of this assumption is that
all the conditional volatilities of macro and financial

market variables are driven by the same underlying
consumption volatility.

In this paper, we introduce a new volatility factor
into the fundamental BY model. This is motivated by
recent growing evidence of multiple volatility factors in
the aggregate economy. Alizadeh et al. (2002), Chernov
et al. (2003), Chacko and Viceira (2005), and Adrian and
Rosenberg (2008), among others, document multiple
volatility factors. In studies on options, Christoffersen
et al. (2008) and Lu and Zhu (2010), among others, find
that two volatility factors are necessary in explaining
option returns. Recently, Christoffersen et al. (2012,
2013) and Johnson (2012) demonstrate the importance
of multiple volatility structure in the cross section of
option prices. In terms of macro aggregates, Nakamura
et al. (2012) identify multiple consumption volatility
factors (global and local) from a large panel of con-
sumption data for developed countries, and they find
improved matching on predictability moments relative
to the BY model with multiple volatilities. Decompos-
ing the aggregate consumption into two components,
Boguth and Kuehn (2013) estimate a two-volatility
process and find volatility risk are important for the
cross section of stock returns.

Theoretically, there are also various motivations on
two-factor-volatility models. Bansal and Shaliastovich
(2010) introduce “confidence risks” from an alternative
channel to generate a second volatility factor from
learning and fluctuations in investor confidence from
the forecast data. Extending Drechsler and Yaron (2011),
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Branger et al. (2012) separate the processes for the
jump intensity and the stochastic conditional variance,
with the second volatility arising from the stochastic
jump intensity. In contrast with these studies, our
two-factor model is from a different motivation, and so
the empirical applications are also different.

In our model, the two volatilities enter the model
mainly from an investor’s consumption channel. The
first factor is to capture the time-varying variance of
consumption growth, and the other is to reflect the
time-varying uncertainty of expectation of consumption
growth. The first factor is consistent with evidence in
macroeconomics (see, e.g., Stock and Watson 2002).
Bansal and Yaron (2004) pioneer the interpretation
of the second, but they assume one common factor
drives both the time-varying variance and the time-
varying uncertainty of expectation of consumption
growth. In contrast, we extend this to allow two factors
to drive the two uncertainties. Our assumption of a
two-volatility model for the consumption growth is
broadly consistent with existing and growing evidence
on multiple macroeconomic volatilities, especially the
aforementioned recent studies.

There are three major empirical results with the
two-volatility extension of the BY model. First, the data
strongly support the two-volatility specification over
the conventional one-volatility models in the literature
based on the generalized method of moments (GMM)
tests. Second, the introduction of the second volatility
factor leads to a significant, first-order improvement in
matching the standard features of the equity market
data considered in the literature, such as the pre-
dictability of future cash flows, returns, and return
volatilities by asset valuations. Third, the second volatil-
ity factor plays an important role in accounting for
the more recent, option-based features of the markets
data such as the variance risk premium and VIX term
structure.

Methodologically, instead of calibrations, we provide
perhaps one of the first empirical estimations of the
long-run risks model. By casting our extension of the
BY model in continuous time, we are able not only
to avoid the occasional negative volatility problem
in the discrete-time counterparts, but also to obtain
approximate analytical solutions for many functions of
economic interest, such as derivative prices, measures
of volatility, and the slope coefficients of various pre-
dictive regressions. These provide qualitative insights
in understanding long-run risks models as to where
the one-factor BY model may need improvement and
how the second volatility factor can help. In addition,
they are valuable for empirical implementations. With
the analytical solutions, it is straightforward to write
out the model moment conditions, making it easy to
apply GMM for estimation and tests.

The rest of this paper is organized as follows. Sec-
tion 2 provides a short review of the BY model.
Section 3 provides the new long-run risks model with
both long-run and short-run volatility components
and solves various functions of interest approximate
analytically. Section 4 provides the empirical results.
Section 5 discusses some of the open issues and future
research, and §6 concludes.

2. A Short Review of the BY Model
In this section, we provide a short review of the BY
model, which will be useful for understanding our
extension and its comparison with other models.

The BY model assumes a representative investor who
has Epstein–Zin–Weil recursive preferences (Epstein
and Zin 1989, Weil 1989) and maximizes the lifetime
utility,

Vt = 6C
41−�5/�
t +�4Et6V

1−�
t+1 751/�7�/41−�51 (1)

where Ct is consumption at time t, � is the coefficient
of risk aversion, � is the intertemporal elasticity of
substitution (IES), and � = 41−�5/41−1/�5. When � = 1,
i.e., � = 1/�, the recursive utility becomes additive
power utility; when � < 1, i.e., � > 1/�, as demonstrated
by Epstein and Zin (1989), the investor prefers early
resolution of uncertainty, which, intuitively, is due
to the time aggregator being a convex function with
power 1/� > 1. As illustrated by Bansal and Yaron
(2004), it is necessary to impose � > 1 and � > 1 to
account for the high stock market risk premium in the
long-run risks model.

The investor makes his optimal portfolio decision
under the discrete-time processes for consumption and
dividends, the economic fundamentals, as follows:

log4Ct+1/Ct5=�+Xt +�t�t+11

Xt+1 = �Xt +�x�tet+11

�2
t+1 = �2 +�4�2

t −�25+�wwt+11

log4Dt+1/Dt5=�d +�Xt +�d�tut+11

(2)

where Xt is the long-run risk that affects both con-
sumption and dividend growth, and is persistent with
autoregression (AR) coefficient � and volatility �x�t ;
the variance process �2

t is also an AR process with
coefficient �; �t+1, et+1, wt+1, and ut+1 are independent
shocks drawn from the standard normal distribution;
the parameter � is the dividend growth leverage ratio;
and �x and �d are volatility leverage ratios for long-run
risks and dividend growth, respectively.

The intuition behind the model is that Xt captures
the long-run growth prospects of the economy. Shocks
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in both long-run Xt and short-run �t+1 drive the con-
sumption growth and asset prices. With � < 1, the fear
of adverse long-run growth requires a high risk pre-
mium as compensation. Since the long- and short-run
shocks in dividend growth and asset returns can be
very volatile, the BY model can successfully explain,
among other stylized facts, the equity risk premium, the
risk-free rate, and the volatility of the market return.

However, there are some strong implications from the
original BY model that are inconsistent with the data.
Empirically, the price–dividend ratio has little power in
predicting consumption growth, but the model implies
the opposite. Bansal et al. (2012; henceforth, BKY)
address this issue by increasing the persistence of
the volatility to make it a more important factor, so
the relative importance of the long-run consumption
risk factor in the price–dividend ratio can be reduced,
and so can its predictability on consumption growth.
However, this persistent volatility factor implies much
greater predictive power of stock price–dividend ratio
for future stock return volatility than is found in
the data, as pointed out by Beeler and Campbell’s
(2012) extensive study. In addition, the increase in the
persistence of the volatility entails a small (virtually
zero) variance risk premium that is inconsistent with
the data. Drechsler and Yaron (2011) allow jumps in the
volatility process that are capable of explaining the large
negative variance risk premium, but their extension
does not resolve the predictability problem. Because
multifactor stochastic volatility models are necessary in
capturing volatility risk premium and the volatility
term structure dynamics (see, e.g., Christoffersen et al.
2008, Lu and Zhu 2010, Zhou and Zhu 2011), we adopt
this framework in this paper to allow two volatility
factors in the long-run risks model.

3. The New Long-Run Risks Model
In this section, we first motivate our dynamic processes
for the state variables in the new long-run risks model,
and then solve the model in terms of the state variables.
Subsequently, we provide approximate analytical solu-
tions to functions of interest: the consumption–wealth
ratio, market prices of risks, price–dividend ratio, and
market return volatility. Then we derive analytical
results for the predictability regression coefficients of
the excess return, consumption and dividend growth
rate, and their volatilities, as well as the variance risk
premium.

3.1. The Model and Solution
Our model extends the BY and BKY models in the
continuous-time framework with two volatility factors.
Parallel to the discrete-time model (1), we consider the

following model for the consumption and dividend
processes and their related variables:

dCt

Ct

= 4�+Xt5 dt+
√

V1t�c+V2t41−�c5 dZ1t1

dXt = −�Xt dt+�x

√

V1t�x+V2t41−�x5 dZ2t1

dDt

Dt

= 4�d+�Xt5 dt+�d

√

V1t�d+V2t41−�d5 dBt

+�dc

√

V1t�c+V2t41−�c5 dZ1t (3)

+�dx

√

V1t�x+V2t41−�x5 dZ2t

+�dv

√

V1t dw1t+�dv2

√

V2t dw2t1

dV1t = �14V̄1 −V1t5 dt+�1

√

V1t dw1t1

dV2t = �24V̄2 −V2t5 dt+�2

√

V2t dw2t1 0<�1<�21

where dZ1t , dZ2t , dBt , dw1t , and dw2t are independent
Brownian motions. This model specification, which
sets a convenient framework for our GMM estimation
and model comparison study in later sections, is the
most general one for two-factor models that allow for
analytical solutions, and nests both continuous-time
BY and BKY models.1 When �x = 1, �c = 1, �d = 1, and
�dc = �dx = �dv = �dv2 = 0, the model reduces to the
continuous-time BY model. When �x = 1, �c = 1, �d = 1,
and �dc = �dv2 = 0, it becomes the continuous-time BKY
model. Furthermore, if we set �x = 1, �c = 1, �d = 1,
and �dv2 = 0, we get the most general one-factor model.

The key feature of the new model is that the con-
sumption growth has two volatility factors, whose
motivation is discussed in the introduction. In this
setup, the total variance level is V1t�c +V2t41 − �c5, a
convex combination of a long- and a short-run variance,
V1t and V2t . The same variance decomposition, adjusted
by the volatility leverage factor �x, is also applied to
the long-run risk Xt . The dividend growth process
is treated similarly, except that it allows for various
covariations with Ct and Xt , as in the BKY model.
The two components of volatility, as derived from
the model, will enter into the stock price volatility,
which helps to match the market variance premium
and the volatility predictability with the data. Fur-
thermore, the long- and short-run variances follow
two independent standard square-root Heston (1993)
processes, which avoid the negative variance problem
of the discrete-time Gaussian specification of the BY
and BKY models.

To solve the equilibrium prices and other quantities
of interest, following the BY model, we use the Epstein–
Zin–Weil preference, but in continuous time. Based on

1 In the original BY and BKY models, variance is modelled as
Gaussian process as opposed to square-root process in this paper.
Hence we refer to the BY and BKY models as long-run risks models
with one-factor square-root variance process.
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Duffie and Epstein (1992) and analogous to (1), we can
define the intertemporal value function recursively by

Jt = Et

[

∫ T

t
f 4Cs1 Js5 ds

]

0 (4)

Thus, the representative investor’s objective is to choose
consumption to optimize the value function; that is,

Jt = max
8Cs9

Et

[

∫ T

t
f 4Cs1 Js5 ds

]

1 (5)

where f 4C1 J 5 is a normalized aggregator related to current
consumption Ct and continuation value function Jt ,
and is given by

f 4Ct1 Jt5

=
�

1 − 1/�
41 −�5J

[(

C

441 −�5J 51/41−�5

)1−1/�

− 1
]

1 (6)

with � the rate of time preference, � > 0 the relative
risk aversion, and � > 0 the IES. Theoretically, the
aggregator in (6) should be an increasing function of
the value function J (see, e.g., Skiadas 2009). This places
joint restrictions on � and � such that � ≥ 1 or � < 0,
where � = 41−�5/41−1/�5. If � = 1, as shown by Duffie
and Epstein (1992), we obtain the standard additive
expected utility of constant relative risk aversion. In our
model setting, the value function satisfies the following
Hamilton–Jacobi–Bellman (HJB) equation:

max
8C9

8f 4C1 J 5+AcJ 9= 01 (7)

where Ac is the infinitesimal generator associated with
vector process 4Ct1Xt1V1t1V2t5 defined in Equation (3).
The solutions are obtained by conjecturing a function
form of value function as

J 4Wt1Xt1V1t1V2t5

= exp4A0 +A1Xt +A2V1t +A3V2t5
W 1−�

t

1 −�
1 (8)

and using the log-linear approximation, which
Campbell (1993) develops in discrete time and Chacko
and Viceira (2005) use first in continuous time. The
details are provided in the appendix.

3.2. Consumption–Wealth Ratio
The consumption–wealth ratio

Ct

Wt

= �� exp84A0a +A1aXt +A2aV1t +A3aV2t59 (9)

is log linear in the state variables and has similar
functional form as in the BY model. In particular,

A1a = −
1 − 1/�
g1 +�

1 (10)

which is exactly the same as the continuous analogue
of BY’s −A1.2 Hence, the same interpretation applies
that, when � > 1 (� < 1), A1a < 0 (A1a > 0), which
means that a rise in expected consumption growth
lowers (increases) the consumption–wealth ratio, and
the substitution (income) effect dominates. In addition,
the consumption–wealth ratio is more sensitive to the
expected growth rate when the persistence of expected
growth shocks, measured by 1/�, increases.

However, there are now two volatilities in Equa-
tion (9). This is expected since they are in the basic
dynamics equations. Because of their symmetric for-
mulations entered into the consumption and dividend
dynamics, the two volatility components impact on the
ratio in the same way, with proportional coefficients
A2a and A3a depending on the volatility parameters via
similar functional forms. When � > 1, both A2a and
A3a are positive. The same intuition of the original BY
model about volatility also holds here. For example,
a rise in either of the volatilities will make consump-
tion more volatile, which lowers asset valuations and
increases the risk premia on all assets. In addition, an
increase in the persistence of volatility shocks, that is,
a decrease in either �1 or �2, will magnify the effects of
volatility shocks on valuation ratios, since the investor
would perceive changes in economic uncertainty as
being long lasting.

Empirically, the aggregate wealth, which consists of
both asset wealth and human capital, is not directly
observable. However, Jagannathan and Wang (1996)
and Lettau and Ludvigson (2001), among others, argue
that it may be expressed in observable variables of
consumption, asset wealth, and labor income under
various assumptions. In this paper, we focus on the
stock price–dividend ratio and its predictability, which
are empirically observable.

3.3. Asset Prices
In this subsection, we present the analytical results for
the risk-free rate, market prices of risks, and stock price–
dividend ratio whose derivations are in the appendix.
The risk-free rate is given by

rf = r0 + r1Xt + r2V1t + r3V2t1 (11)

with parameters given in (35). Note that r1 = 1/� > 0,
which implies that the risk-free rate rises with higher
expectation of consumption growth.

The state price density (or pricing kernel) can be
expressed as

d�t

�t

=−4rfdt+�1dZ1t+�2dZ2t+�3dw1t+�4dw2t51 (12)

2 Note that Bansal and Yaron (2004) use the ratio of wealth to
consumption, but we use the ratio of consumption to wealth. Hence
our Aia’s have the opposite sign of theirs. The same applies to the
price–dividend ratio below.
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where �i’s (i = 1121314) are the market prices of risks
compensating for short-run consumption risk, long-run
consumption risk, and two-volatility risks, respectively.
The maximal Sharpe ratio is defined as the condi-
tional volatility of the pricing kernel,

√

�2
1 +�2

2 +�2
3 +�2

4.
When � = 1/�, the case for standard models, such as
the Breeden (1979) consumption-based capital asset
pricing model (CCAPM), all the risk premia other
than that of the short-run consumption risk become
zero, and hence it will not be possible for the standard
models to match the market risk premium. However,
the long-run risks models with � > 1/�, including the
BY and BKY models and our new model, can produce
the positive market prices for the long-run risks and
negative market prices for variance risks, both of which,
combined with the stock market’s positive beta for
long-run risks and negative beta for volatility risks,
contribute positively to solving the equity risk premium
puzzle. Hence, the relative magnitudes of �i’s quan-
tify the different contributions to the maximal Sharpe
ratio by various risk factors, and will be examined
empirically later with comparison to the BY model.

The price–dividend ratio is

Dt

Pt

= exp84A0m +A1mXt +A2mV1t +A3mV2t590 (13)

The price process is obtained by applying Ito’s lemma
to Equation (13):

dPt

Pt

= 6c3 + c4Xt + c5V1t + c6V2t7dt +
√

c1V1t + c2V2t dZt1

where ci’s (i = 1 to 6) are constants given in (38)
and (39). The term dZt is a new Brownian motion
defined accordingly, and hence the variance of the
price process is

Vt = c1V1t + c2V2t0 (14)

3.4. Predictability of Excess Returns,
Consumption, and Dividends

To examine predictability of the variables, we, following
Beeler and Campbell (2012), consider the following
three K-period regressions:

4rt+j − rf 1 t+j5+ · · · + 4rt+j+K − rf 1 t+j+K5

= �jK +�4pt − dt5+ �jKt1 (15)

ãct+j + · · · +ãct+j+K = �jK +�4pt − dt5+ �jKt1 (16)

ãdt+j + · · · +ãdt+j+K = �jK +�4pt − dt5+ �jKt1 (17)

where r and rf are the stock market rate of return and
risk-free rate, respectively, and ct and dt are logarithms
of consumption and dividends. To explain the observed
regression patterns, our idea is to derive the regression
slope coefficients as functions of the model parameters

that can be chosen in such a way as to make the model-
implied regression slope coefficients match closely with
those of the data.

We provide the formulas for K = 1 only for notational
simplicity, and the general case is a straightforward
extension. As K = 1, the regressors of the above three
regressions all have the generic functional form of

dYt = 6a0 + a1Xt + a2V1t + a3V2t7 dt

+
√

b1V1t + b2V2t dZt1 (18)

where dYt corresponds to excess return d ln Pt +Dt/Pt −

rf dt, consumption growth d lnCt , and dividend growth
d lnDt , respectively. The parameter ai as well as
the regression slope coefficient are then analytically
obtained in Equation (40), which shows that with two
volatility components rather than one, the covariance
function in the numerator of � depends on three rather
than two factors, precisely how the volatility com-
ponents and the model parameters contribute to the
degree of predictability.

3.5. Predictability of Volatility: Excess Returns,
Consumption, and Dividends

In this subsection, we present the predictive coefficients
of volatility by excess returns, consumption growth,
and dividend growth, which are not matched well in
the BY and BKY models, as demonstrated in Beeler
and Campbell (2012). In this paper, we use the same
volatility measure as in Beeler and Campbell (2012).
There are two steps in computing this measure. First,
we run an AR(1) regression of each variable of interest
yt+1 as

yt+1 = bvol
0 + bvol

1 yt +ut+11 (19)

where yt+1 is the excess return or consumption growth
or dividend growth. Second, the K-period realized
volatility is defined as the sum of the absolute values
of the residuals,

Volt1 t+K−1 =

K−1
∑

k=0

�ut+k� (20)

over K periods, with K, as before, the horizon of
interest.

Then, the predictability of volatility is examined
from the regression of the log of K-period realized
volatility on the logarithm of price–dividend ratio,

ln6Volt+11 t+K7= �+�vol4pt − dt5+ �t0 (21)

The derivations are given in the appendix.

3.6. Variance Risk Premium
In this subsection, we follow Drechsler and Yaron
(2011), among others, to define the variance risk pre-
mium (VRP) as the difference between the objective or

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
2.

11
1.

81
] 

on
 1

4 
Fe

br
ua

ry
 2

01
5,

 a
t 1

4:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Zhou and Zhu: Volatilities and Long-Run Risks
418 Management Science 61(2), pp. 413–430, © 2015 INFORMS

physical expectation and the risk-neutral expectation of
the variance of aggregate stock market return over a
period �0. The risk-neutral expectation of variance is
also known as the variance swap (VS) rate, which can
be replicated by model-free method utilizing options
on all strike prices. Variance swap contracts are popular
over-the-counter volatility derivatives betting on real-
ized variance (RV) against the predetermined VS rate
(see Egloff et al. 2009). The VIX index, which has been
published by the Chicago Board Options Exchange
(CBOE) since 2003, is the square root of the VS rate
on S&P 500 index with 30-day maturity (for details,
see Chicago Board Options Exchange 2009, Zhang and
Zhu 2006). In fact, as Lu and Zhu (2010) and many
others show, the VIX is almost always bigger than the
realized volatility because investors with more risk
aversion are willing to pay a positive risk premium
for long stock market volatility. For that reason, VIX
is referred to as the market’s fear gauge by financial
commentators.

Following Zhang and Zhu (2006), we first define the
time t expected future realized variance over period
�0 under the physical measure, which is denoted as
RVt . Using the market variance process defined in
Equation (14), we have3

RVt =

2
∑

i=1

ci4A
P
i +BP

i Vit50 (22)

Similarly, the VS rate, defined as the time t expected
future realized variance over time period �0 under the
risk-neutral probability, is given by

VSt =

2
∑

i=1

ci4A
Q
i +BQ

i Vit50 (23)

The parameters AP
i , BP

i ,AQ
i , and BQ

i are defined in the
appendix.

Hence the VRP, defined as the difference between
RV of Equation (47) and the VS rate of Equation (48),
can be expressed as

VRP≡RVt−VSt =

2
∑

i=1

ci64A
P
i −AQ

i 5+4BP
i −BQ

i 5Vit71 (24)

where the coefficients are analytically determined by
the model parameters.

In our model, the variance risk premium is negative,
indicating that investors regard increases in market
volatility as unfavorable shocks to the investment
opportunity. In comparison with the BY and BKY mod-
els, the market variance risk premium is determined

3 The RV is annualized, and so is the variance swap rate as well as
the VRP. The VRP data provided in Tables 1, 2, and 7 are annualized
with a scaling factor 10,000/12.

by both the long- and short-run volatilities. As will be
clear later, because of the rich dynamics of these two
components, the associated parameters can be chosen
in such a way that the model can explain the market
variance risk premium along with other facts, whereas
the previous models fail to do so.

4. Empirical Results
In this section, we first describe the data and estimation
procedure for our empirical study. We then present
the empirical results and model comparison with BY
and BKY models. Finally, we examine how the two-
volatility-factor model explains the predictability issues
raised by Beeler and Campbell (2012) as well as the
large and negative variance risk premium of the data.

4.1. Data Description
The stock market and macroeconomic data from 1930
and 2008 are from Beeler and Campbell (2012).4 The
stock index returns are monthly. The risk-free rates
are the 30-day returns on the Treasury bills. The con-
sumption data include total nominal nondurables and
services consumption, which are deflated both by the
rate of population growth and by inflation. The popu-
lation data are the year-end values from the Census
Bureau. These values are used for annual data and
the fourth quarter of quarterly data. Other quarterly
population values are interpolated assuming a constant
geometric growth rate within a year. Stock returns, div-
idend growth, and consumption are all deflated with
the consumer price index (CPI). For yearly inflation,
the rate of inflation is the log of the ratio of the CPI in
the last month of the current year to the CPI in the last
month of the previous year.

We compute the model-free VRP from CBOE’s VIX
series from 1990 to 2008 and the realized monthly
variance based on the S&P 500 index. Due to the lack
of VIX, and hence VRP, data before 1990, we run the
following quarterly regression of VRP with data from
1990 to 2008, with R2 = 0011:

VRP/100 = −00122+3089gc−00094gd−00837re

+00018pd−4056rf −1094RV/100+�1 (25)

where gc is the consumption growth, gd is the dividend
growth, re is the excess stock return, pd is the log
price–dividend ratio, rf is the risk-free rate, and RV
is the realized stock variance. Then we use the fitted
regression to extrapolate the VRP data from 1930 to
1990. The extrapolation approach is often used in the
bond literature to fill in missing data. The extrapolation
preserves the mean value of VRP well. Over the entire
time period from 1930 to 2008, the mean of the VRP is

4 We are grateful to Jason Beeler for providing us the data.
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Figure 1 VRP Regression
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−13011, fairly comparable to −15085, the mean of the
observed data after 1990. In addition, its covariance
with stock return is −0040 and −0036, respectively, for
the extended sample and original sample. Overall,
the fitted data are comparable for the original and
extended samples. Figure 1 plots all the data of both
the regressand and the regressors. The absolute value
of VRP peaks during the Great Depression periods.

Following many studies, such as BKY, we are inter-
ested in the long-horizon implications of the long-run
risks models, and hence use the annual data to estimate
the model, because not all data are available over 1930–
1990 periods with higher frequency. Table 1 provides
the summary statistics of the annualized data. The
consumption growth has large fat tails as measured by
the high kurtosis value. Note that the interest rate is in
real terms, so it has a minimum value of −7098%.

4.2. GMM Tests
We use GMM to estimate and test the model. The
base case pricing restrictions include the mean value,
standard deviation, and first-order autocorrelation coef-
ficients of the log consumption growth, log dividend
growth, real risk-free rate, excess stock return, and log
stock price–dividend ratio. These 15 base case moments,
which are presented in the left panel of Table 2, have

been extensively studied in the long-run risks model
literature, e.g., Bansal and Yaron (2004), Bansal et al.
(2007b, c), and Beeler and Campbell (2012).

Besides the base case moments, we pay special atten-
tion to the restrictions on six predictability regression
coefficients given in Equations (40) and (44). Given
the unconditional moments of the base case, these pre-
dictability coefficients will be sensitive to the additional
state variable of the second volatility factor. Finally,
we include two additional restrictions on variance risk
premium, the mean and standard deviation. These
eight additional moments are shown in the right panel
of Table 2.

Table 1 Summary Statistics

gc gd pd re rf VRP

Mean 1095 1002 3.31 6020 0099 13011
Std. dev. 2016 10069 0.46 18034 4028 23095
Skewness −1016 −0092 0.47 −0068 −0076 1074
Kurtosis 6099 8077 2.93 3032 5053 9085
Min −9095 −41081 2.36 −45091 −7098 −36060
Max 9050 40093 4.48 43097 5018 117083

Note. This table provides the mean, standard deviation, skewness, kurtosis,
minimum, and maximum of the annual data from 1930 to 2008.
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Table 2 GMM Moments

Data BY BKY New Data BY BKY New

E4ãc) 1095 1079 1082 1073 �4re5 −00059 −00007 −00078 −00073
� 4ãc5 2016 2092 2096 2021 �4ãc5 00012 00114 00022 00032
AC14ãc5 0044 0051 0044 0045 �4ãd5 00064 00343 00054 00174
E4ãd5 1002 1066 1085 1032 �vol4re5 −00081 −00123 −10315 −00167
� 4ãd5 10069 11057 16042 11025 �vol4ãc5 −00481 −00128 −10420 −00336
AC14ãd5 0014 0040 0029 0032 �vol4ãd5 −00530 −00146 −10483 −00561
E4re5 6020 6062 6058 6034 VRP −13011 −00005 −00010 −5079
� 4re5 18034 16088 21035 19016 � 4VRP5 23095 00000 00000 29071
AC14re5 0004 0003 0002 0001
E4rf 5 0099 2056 0099 1015
� 4rf 5 4028 1030 1028 1084
AC14rf 5 0059 0085 0086 0065
E4p− d5 3031 3000 3004 2056
� 4p− d5 0046 0016 0026 0026
AC14p− d5 0088 0077 0095 0085

Notes. This table presents the 23 target moments of the data. The fitted moments of the BY and BKY models are taken from Beeler and Campbell (2012). The data
are annual from 1930 to 2008.

In our GMM test, we minimize a weighted sum
of squared differences of the 23 target moments
between the model derived and the market implied.
Instead of using the standard optimal weighting
matrix, we use a diagonal one with weights adjust-
ing the moments to the same order of magnitude.
This technique is used by Zhou (1994) to isolate
parameters for making parameter estimation easy
and stable. Then, the GMM test statistic can be con-
structed to account for the special weighting matrix
(see the online appendix associated with this paper
for more details, available at http://apps.olin.wustl
.edu/faculty/zhou/Online_Appendix_Feb2014.pdf).

4.3. Moment Matching and Model Comparison
In this subsection, we present the GMM estimation
and test results.

Since the two mean levels of the two volatility factors,
V̄1 and V̄2, are not identified independently, we set
V̄1 = V̄2. Hence, there are in our two-factor model a
total of 21 parameters, � = 4�1�1�x1�c1�x1�d1�1�d1
�d1�dc1�dx1�dv1�dv21 V̄1 = V̄21�11�11�21�21�1�1�5.

Table 3 provides the estimation results under the
heading “New.” For comparison, we also provide the
corresponding values of the continuous-time version of
the BY and BKY models based on their calibrations.

There are a few notables. First, all the parameters
governing the consumption growth, �, �, and �x, are
virtually the same across the models.5 Second, the
parameters of the dividend growth process are, how-
ever, different between their models and ours. In our
model, the dividend growth leverage ratio � is 4.53,
whereas the values for BY and BKY are 3 and 2.5.

5 Note that the long-run risk volatility multiple �x is 0.044 and 0.038
for BY and BKY models, respectively. We have multiplied them by
12 here because Xt is the annualized expected consumption growth
in our model, whereas it is monthly in their model.

Intuitively, increasing � will increase A1m, the price–
dividend ratio sensitivity to the long-run risk compo-
nent. This increase is required by the need to match

Table 3 Long-Run Risks Parameters

Preference parameters

� � �

BY 10 105 00024
BKY 10 105 0003
New 100100 10350 00009
Error 20274 00985 00115

Consumption growth dynamics

� � �x �c �x

BY 00018 00256 00528 1 1
BKY 00018 003 00456 1 1
New 00018 00256 00528 00915 00176
Error 00002 00115 00040 00172 00227

Dividend growth dynamics

�d � �d �d �dc �dx �dv �dv2

BY 0.018 3 405 1 0 0 0 0
BKY 0.018 205 5096 1 206 0 0 0
New 0.019 40532 20121 10000 00076 −30033 20000 −20993
Error 0.002 00015 00007 00034 00003 00007 00005 00007

Volatility parameters

Factor 1 Factor 2

V̄1 �1 �1 V̄2 �2 �2

BY 000272 0.0035 0.156
BKY 000252 0.0027 0.015
New 000242 0.0029 0.038 000242 0.676 100745
Error 000003 0.0331 0.563 000003 0.116 00007

Notes. This table reports the parameters for three long-run risks models: the
Bansal and Yaron (2004), Bansal et al. (2012), and new two-factor models; �
is the risk aversion parameter, � is the IES parameter, and � is the discount
rate. Other panels provide parameters governing the consumption, dividend,
and volatility dynamics in Equation (3).

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
2.

11
1.

81
] 

on
 1

4 
Fe

br
ua

ry
 2

01
5,

 a
t 1

4:
07

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Zhou and Zhu: Volatilities and Long-Run Risks
Management Science 61(2), pp. 413–430, © 2015 INFORMS 421

the predictability regression parameters. The dividend
volatility leverage ratio is �d = 405 for BY,

√
�2
d +�2

dc =

605 for BKY, and
√

�2
d +�2

dc +�2
dx +�2

dv +�2
dv2 = 5016 for

the new model, which is between the BY and BKY
models. Third, the substantial difference occurs for the
volatility process, as expected. Whereas the volatility
of the BKY model appears too persistent, with a half
life of around 50 years, and much more so than that
of the BY model of 4.5 years, our new model has a
long-run component with a half life of around 20 years
and a short-run one of around one month, which are
consistent with aforementioned literature on stochastic
volatility. In addition, note that once we incorporate the
two components in the volatility process, the long-run
(short-run) component should have a half life longer
(shorter) than that implied from the one-component
model. This is indeed the case when we compare our
model with the BY calibration.

To understand the models further, it will be use-
ful and informative to assess the moments and their
sample estimates, as did Beeler and Campbell (2012).
Table 2 presents the 23 moments that are used in our
GMM estimates. We provide the results given by BY,
BKY, our new model, and the data (with yearly time
interval from 1930 to 2006). The left panel provides
the 15 base case asset pricing moments discussed. As
with the BY and BKY models, these moments are well
matched by our model. In particular, our estimated
preference parameters, � = 1001 and � = 1035, are close
to the BY calibration of � = 10 and � = 105. In addi-
tion, our model produces all the stylized facts on the
market, with an equity risk premium of 6.34% and
a risk-free rate of 1.15%, close to the market data of
6.20% and 0.99%, respectively. Furthermore, Table 4
presents the comparison between our new model and
the BY model on the conditional volatility of the pricing
kernel (the maximal Sharpe ratio) and the relative
contributions of different economic shocks. The result
of the BY model is from Bansal and Yaron (2004). The

Table 4 Decomposing the Variance of the Pricing Kernel

Relative variance of shocks

Fluctuating
economic

Independent Expected uncertainty (%)
Volatility of consumption growth

pricing kernel (%) rate (%) Factor 1 Factor 2

New 0.60 15 49 25 11
BY 0.73 14 47 39

Notes. This table presents the volatility of the pricing kernel (maximal Sharpe
ratio) and the relative contributions of different shocks to the variance of the
pricing kernel, for both our new model and the BY model. The result of our
new model is based on the GMM estimation, and that for the BY model is from
Bansal and Yaron (2004). The contribution from the fluctuating economic
uncertainty for our new model comes from two volatility factors, in contrast to
BY’s one volatility factor.

maximal Sharpe ratio in our model is 0.60, compared
with 0.73 of the BY model, the difference of which
is mainly due to the modelling differences, such as
the continuous-time versus discrete-time model, and
the square-root process versus the Gaussian process
for variance. Furthermore, the contribution from the
fluctuating economic uncertainty in our new model
comes from two volatility factors, in contrast to BY’s
one volatility factor. Despite the differences, the relative
contributions from the different risks to the pricing
kernel are roughly the same. For example, the contri-
bution of the long-run risks is 49% in the BY model,
and 47% in the new model. In addition, the combined
contribution from the two volatility factors in the new
model is 36%, compared with the 39% of the one
volatility factor in the BY model. Similar to the BY
model, the independent consumption shocks contribute
only 15% to the total variance of the pricing kernel,
and the maximal Sharpe ratio with only independent
and identically distributed consumption growth rate is
only 0.23. In conclusion, our model matches well the
basic asset pricing moments studied in the BY model,
and the main difference between the models comes
from the different structure of the volatility factors.

The major differences among the models occur in
the right panel of Table 2, where �4re5, �4ãc5 and
�4ãd5 are the regression coefficients of the market
excess return, consumption, and dividend growth
on the price–dividend ratio in a one-year horizon.
For the market excess return, the data imply �4re5=

−00059. Whereas our model matches well with a beta
of �4re5= −00073, the BY model, with a beta of �4re5=

−00007, does not match this important predictability. In
contrast, the BKY model improves over the BY model
substantially in this aspect, matching well with a beta
of �4re5= −00078. Overall, the BKY model performs
very well in explaining the predictability of excess
returns, consumption, and dividends, and so does our
new model.

However, the good performance of the BKY model
comes at a high cost of matching the predictive regres-
sion coefficients of the volatility regressions of excess
return, consumption, and dividend growth on the
price–dividend ratio, �vol4re5, �vol4ãc5, and �vol4ãd5.
For �vol4re5, the BKY value is −10315, which is more
than 10 times greater in magnitude than that of the
data, −00081. For both �vol4ãc5 and �vol4ãd5, the values
of the BKY model are about three times greater in
magnitude than those of the data too. On the other
hand, the BY model provides volatility predictability
10 times smaller than that of BKY model, and fails to
match the data as well. In contrast, our new model
matches well with the data for all the three volatility
regression coefficients. As explained later in §4.5, the
key reason is that both BY and BKY models rely on a
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Table 5 Predictability for Different Horizons

Rate regression

Data BY BKY Two-factor

Periods � R2 � R2 � R2 � R2

re 1Y −00059 0.022 −00007 0.000 −00078 0.009 −00073 0.012
re 3Y −00229 0.143 −00026 0.000 −00226 0.026 −00192 0.083
re 5Y −00421 0.278 −00039 0.000 −00368 0.041 −00297 0.198
gc 1Y 00012 0.068 00114 0.390 00022 0.037 00039 0.210
gc 3Y 00010 0.013 00286 0.435 00052 0.042 00031 0.044
gc 5Y −00001 0.000 00350 0.373 00069 0.036 00025 0.017
gd 1Y 00064 0.074 00343 0.228 00054 0.008 00174 0.173
gd 3Y 00076 0.034 00860 0.288 00133 0.011 00138 0.036
gd 5Y 00051 0.013 10171 0.265 00176 0.010 00112 0.014

Volatility regression

Data BY BKY Two-factor

Periods �vol R2 �vol R2 �vol R2 �vol R2

re 1Y −00081 0.001 −00123 0.000 −10315 0.085 −00167 0.004
re 3Y −00059 0.003 −00115 0.001 −10268 0.273 −00096 0.004
re 5Y −00017 0.000 −00113 0.002 −10336 0.364 −00080 0.004
gc 1Y −00481 0.035 −00128 0.000 −10420 0.095 −00546 0.045
gc 3Y −00491 0.122 −00122 0.001 −10382 0.290 −00527 0.129
gc 5Y −00564 0.235 −00113 0.002 −10336 0.375 −00509 0.206
gd 1Y −00530 0.035 −00146 0.000 00054 0.102 −00317 0.013
gd 3Y −00478 0.070 −00120 0.002 00133 0.305 −00267 0.024
gd 5Y −00496 0.084 −00103 0.003 00176 0.393 −00250 0.034

Notes. This table reports the regression coefficients and R2 values for the rate regressions and the volatility regressions in the upper and lower panels, respectively.
The predictive variable is the log price–dividend ratio, and re, gc , and gd are stock returns, consumption growth, and dividend growth, respectively. Y, year.

one-factor volatility model, which makes the matching
difficult for �vol4re5, �vol4ãc5, and �vol4ãd5.

To further assess the predictability, Table 5 reports
both the regression slopes and the R2 values for various
horizons, one, three, and five years. The table shows
that our two-factor model can generate the “term
structure” of predictability as demonstrated in the
data. For example, in the data, the term structure of R2

increases with the horizon for stock returns (from 00022
to 00278), whereas it decreases for both consumption
and dividend growth rates. Our model matches the
pattern well, but the BY model, with only one-factor
volatility, can only produce a flat term structure in
which the short-run predictability is closely related
to the long-run predictability. The BKY model has
performance similar to that of the BY model.

Furthermore, we examine the last two target
moments in Table 2, i.e., the mean and standard devi-
ation of the VRP. Whereas the data6 show a large
negative VRP at −13011 with standard deviation of
23095, both the BY and the BKY models imply a VRP of

6 According to market convention, the VRP data presented here are
converted to monthly VRP through a factor of 1/12, and multiplied
by 10,000.

only −00005 and −00010, which are too small in magni-
tude to explain the observed variance risk premium. In
contrast, our new model implies a VRP of −5079, which
is very close to the empirical mean level. Moreover, the
standard deviation of the VRP in our model is 29.71,
which also matches well with the data. The J test of
the model is the standardized sum of squared moment
matching errors; J should be �2-distributed with degree
of 2. Our model has J = 108, corresponding to a p-value
of p = 0040, which means we cannot reject the model at
all conventional confidence levels. Specifically, the BKY
model can be obtained through restrictions, i.e.,

V̄2 = �2 = �2 = �dv2 = 0

and
�c = �x = �d = 10

The BY model can be obtained by additional restric-
tions of

�dc = �dx = �dv = 00

We use the same covariance matrix for the match-
ing moments as the unrestricted two-factor model
and compute J 4BKY5− J 4New5∼ �2475 and JT 4BY5−
JT 4New5∼ �24105 using the moments given by BKY
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and BY, which shows that JT 4BKY5− JT 4New5= 11133
and JT 4BY5− JT 4New5= 688, a very large increase in
the errors for matching moments, corresponding to
a p-value very close to zero. This means that our
new model outperforms the BY and the BKY models
substantially from a statistical point of view as well.

4.4. Return Variance Decomposition
To obtain further intuition of the model, we examine its
implication on return variance decomposition, which
was first proposed by Campbell and Shiller (1988)
and inspired a large volume of literature across many
disciplines including finance, accounting, and macroe-
conomics (for a review, see Chen and Zhao 2009). In
particular, using aggregate stock market data from 1927
to 1988, Campbell (1993) shows that about one-third
of the variance of unexpected returns is attributed to
the cash-flow risk, one-third to the discount-rate risk,
and one-third to the covariance between these two.
Debate on which one is more important in driving
stock market return variation, discount-rate risk, or
cash-flow risk, is highly inconclusive because of model
uncertainty in return predictability. Using data from
1953 to 2001 with different predictive variables, Chen
and Zhao (2009) find that discount-rate risk accounts
for anywhere from 10% to more than 80% of return
variance.

The long-run risks model, successful in explaining
the level and volatility of stock market return, attributes
almost all unexpected variation of the stock return to
changing cash flow by emphasizing on cash-flow risk.
In contrast, the habit formation model by Campbell
and Cochrane (1999) emphasizes discount-rate risk
by changing investors’ risk attitude. We show that
by extending the one-volatility BY model to the two-
volatility model, we provide enough flexibility for the
model to generate more variation due to discount-
rate risk.

We apply the variance decomposition of Campbell
(1993) with our model estimation. Table 6 demonstrates
the results of our new model in comparison with
the BKY model.7 Note that in our estimation, BKY
attribute 99.5%, 8.2%, and −706% of total variation
to cash-flow risk, discount-rate risk, and covariance
between these two, respectively, whereas Avramov and
Cederburg’s (2012) estimations are 106%, 4.4%, and
−1102%, respectively. The difference is due to the fact
that we cast the BY and BKY models in continuous time
with a square-root volatility process, in contrast to their
discrete-time models with a Gaussian volatility process.
Both cases show that the BKY model attributes too
small a portion of stock return variance to discount-rate
than aforementioned studies. On the other hand, our

7 Here we only compare with BKY calibration because BKY calibration
matches predictability better than BY calibration.

Table 6 Variance Decomposition: Contribution to Total Variance

BKY model New model

Discount-rate risk 00082 0.258
Cash-flow risk 00995 0.661
Covariance −00076 0.081
Total variance 10000 1.000

Notes. This table reports the attribution of return variance to discount-rate
shocks, cash-flow shocks, and covariance between the two shocks. The
decomposition is performed on the BKY model and the new two-factor model.

new two-factor model attributes 25.8% to discount-rate
news, which is in line with the empirical results of
Campbell (1993). The ability of our two-volatility model
to generate more discount-rate variation is attributed
to the additional short-run volatility factor, which
has much higher volatility of volatility (vol of vol)
and hence higher volatility of the discount rate. It
turns out that this short-run volatility factor is also
very important to explain volatility predictability and
variance risk premium, as demonstrated next.

4.5. Volatility Predictability
In this subsection, we examine further the statisti-
cal properties of the volatility regression coefficients.
Table 2 shows that for the one-year horizon, the regres-
sion slope coefficients �vol for volatilities of excess
return, consumption, and dividends are, respectively,
−00123, −00128, and −00146 in the BY model, and
−10315, −10420, and −10483 in the BKY model, both of
which show little difference across the three regressions.
The results are consistent with our theoretical analysis.
Equation (43) shows that the volatility regression coeffi-
cients should be the same for all three variables based
on a one-factor model. Indeed, the three regressors in
regression Equation (21) can all be written as

ln
∫ �

0

√

Vt�dZt� ≈Const+
1

2�

∫ �

0

Vt

V̄
dt1 (26)

where Vt corresponds generically to volatilities of excess
return, consumption, and dividend growth. Note that
in the one-factor volatility model, the three volatilities
will be the same up to a scaling factor to the single
volatility component; hence the regressors are all the
same because Vt/V̄ will be invariant to a scaling factor.
Consequently, �vol’s will be the same for the three
variables, and this holds for different horizons. Hence,
it is critical to use a two-factor volatility model to
explain the varying degrees of volatility predictability.

Note that the volatility predictability in the BKY
model is tenfold larger than that in the BY model,
because of a much more persistent volatility compo-
nent in the BKY model. In our proposed two-factor
model, the volatility regression slope coefficients match
remarkably well with those from the data. While the
data imply significantly varying beta values of −00081,
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−00481, and −00530 for excess return, consumption
growth, and dividend growth, respectively, so does the
model with −00167, −00336, and −00561.

In short, the additional volatility factor is instrumen-
tal to explain the differences in volatility predictability
across excess returns, consumption, and dividends.
As it turns out, it is also fundamentally important in
explaining the market variance premium, as discussed
in §4.6.

4.6. Variance Risk Premium
As mentioned above, one of the difficulties of the BY
and BKY models is to explain the market variance
risk premium, which is large and negative. In this
subsection, we examine in detail why the BY and BKY
models fail to match the market VRP. Consider the
following BY/BKY one-volatility-factor process, which
is cast in our continuous setting:

dVt = �4V̄ −Vt5 dt +�
√

Vt dwt0

The model-implied VRP is −�Vt , with the coefficient �
given by

� =
1 −��

1 −�
A2�

20 (27)

For a persistent process with � very small, given the
observable level of unconditional vol of vol, �2V̄ /42�5,
which is inversely proportional to �, the parameter �2

and hence the VRP coefficient � in Equation (27) cannot
be large enough to match the market data. In BKY
calibration, with a value of �= 00012 and an annual
return volatility of 20%, the VRP in absolute value will
be bounded by

�VRPBKY�< 00012 × 420%2/125× 101000 = 0041

which is much smaller than a value of 13.11 from
our data,8 as reported in Table 7. With an additional
volatility component that is much less persistent than
the volatility processes in both BY and BKY, our new
model can produce the desired VRP mostly contributed
by this short-run volatility, which is consistent with
evidence from the volatility derivatives market (e.g.,
Egloff et al. 2009, Lu and Zhu 2010). In addition, our
new model matches the autoregression coefficient AR1
(with one month lag) of the VRP well. Whereas the
data imply an AR1 value of 0.54, our model yields
a value of 0.47. This is also consistent with that of
Bollerslev et al. (2009). In contrast, both BY and BKY
models imply a too-large value of 0.99 for AR1, a result
of their single-factor structure of the volatility process
that is highly persistent.

8 Note that the VRP estimated using Drechsler and Yaron (2011) data
is −12067. The difference between their data and ours is due to the
difference in sampling period.

Table 7 Variance Risk Premium

Data (DY) DY Data (ours) BY BKY New

VRP −12067 −7057 −13011 −00005 −00010 −5079
Std. 14038 10065 23095 00000 00000 29071
AR1 0054 N/A 0015 0099 0099 0047

Notes. This table reports variance risk premiums (VRP), the standard deviation
(Std.) of VRP, and the monthly autoregression coefficient (AR1) for the market
data, the Drechsler and Yaron (2011) (DY) model, the BY model, the BKY
model, and our new models. The results of the first two columns are from
Drechsler and Yaron (2011). The third column is the data computed from our
data set. All the values are monthly and multiplied by 10,000.

As mentioned earlier, a jump-diffusion model such as
that by Drechsler and Yaron (2011) is an alternative to
explain the negative and large market VRP in the long-
run risks model. Table 7, citing their results, shows that
their model indeed explains well the magnitude of the
VRP. Similar models are also proposed by Bansal et al.
(2007a), Eraker (2008), Eraker and Shaliastovich (2008),
and Bollerslev et al. (2012), among others. However, as
evident from our earlier analysis, it is very difficult
for the Drechsler and Yaron (2011) model to explain
the volatility predictability cross sectionally because it
has only one state variable. In addition, studies in the
volatility literature (see, e.g., Christoffersen et al. 2008,
Lu and Zhu 2010) show that the two-factor volatility
model is generally preferred in explaining the large
negative VRP as well as variance term structure. Hence,
our extension of the BY and BKY models by adding
another volatility factor seems to offer a promising
route for future applications and further extension of
the long-run risks models.

4.7. VIX Term Structure
In this subsection, we provide further evidence to sup-
port the two-factor volatility model. VIX term structure
is perhaps the most direct evidence to show the two-
factor volatility processes. The VIX term structure data
are constructed by CBOE using the same methodology
for VIX, but with different maturities. The data go back
to January 1992, with contract maturity ranging from
a few days to a few years. We construct a constant
maturity term structure with maturities of 1, 2, 6, 9,
and 12 months. We then use a Kalman filter to back out
the latent volatility state variables V1 and V2 using the
parameters of one- and two-factor models estimated
using GMM. Then we construct the VIX term structure
implied by the models for each day. We compute the
mean squared errors (MSEs) for the five contracts with
1, 2, 6, 9, and 12 month maturities, defined as the
average of squared pricing errors of the models. The
MSE for the two-factor model is 0.72 with standard
error 0.03, whereas that for the one-factor model is 3.39
with standard error 0.15; hence the difference is highly
significant. The out-of-sample (OOS) results are also of
interest. The OOS MSE for the one-factor model is 3.90,
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Figure 2 VIX Term Structure: One-Factor Model vs. Two-Factor Model
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Notes. This figure provides the VIX term structure based on one- and two-factor volatility models. The upper, middle, and lower panels show three scenarios of the
possible shapes of the term structure, i.e., upward sloping, flat, and downward sloping. In each graph, the fitted term structures by one- and two-factor models are
represented by dotted and dashed lines, respectively, and the data are represented by a solid line.

whereas that for the two-factor model is 1.78, which
improves the one-factor model by over 50%.

To further appreciate the ability of the two-factor
model for capturing the term structure of variance, we
present in Figure 2 the VIX term structure based on
the one- and two-factor volatility models. The upper,
middle, and lower panels show three scenarios of the
possible shapes of the term structure, i.e., upward slop-
ing, flat, and downward sloping. The upward-sloped

term structure implies the market expectation of the
future volatility will increase, which usually occurs
in normal times. The financial crisis period is fea-
tured by a downward-sloped term structure due to a
dramatic increase in short-term volatility, as demon-
strated in the lower panel of the figure. Generally,
the one-factor model can only generate a flat term
structure, whereas the two-factor model can generate
both upward and downward shapes. To see this further,
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Table 8 VIX Term Structure Slope

Data One-factor Two-factor

Mean 0019 0002 0023
Std. 3052 0000 2054
Skew. −2029 3066 −2083
Kurt. 11038 16089 14002
Min. −34085 0002 −26024
Max. 23029 0004 4082

Note. This table reports the statistics of the VIX term structure slope, which is
defined as the difference between the 12 month and 1 month contracts, from
data and the one-factor and two-factor volatility models.

Table 8 demonstrates the statistics of the VIX term
structure slope, which is defined as the difference
between the 12 month and 1 month contracts, from
the data and the one-factor and two-factor volatility
models. It shows that the two-factor model matches the
data very well, with a mean slope coefficient of 0.23
versus 0.19 for the data, and standard deviation 2.54
versus 3.52. On the other hand, the one-factor model
cannot generate the patterns of the data because it
captures only the level component. The explanation is
similar to that for the interest rate term structure; that
is, the one-factor model captures the level component,
whereas the two-factor model can capture both the
level and slope factors. Johnson (2012) applies principal
component analysis to the VIX term structure and finds
that the first component accounts for 95%, whereas
the second component accounts for 4%, of the total
movement of the curve.

Finally, it is of interest to see how the variance factors
implied from the two-factor volatility model vary over
time. Figure 3 plots their time series based on VIX
term structure data from CBOE from January 1992
to September 2009. The V1 is the long-run volatility
factor with high persistence, and the V2 is the short-run
volatility. From 1992 through 1997, the long-run factor
is extremely quiet, whereas short-run factor is generally
higher and more volatile. During this period, the VIX

Figure 3 Latent Variance Factors

V

V

Notes. This figure shows the two variance factors implied from the two-factor
volatility model using VIX term structure data from CBOE from January 1992 to
September 2009. The V1 is the long-run volatility factor with high persistence,
and the V2 is the short-run volatility.

index is low (average at 14%) and the term structure is
generally flat. Between 1997 and 2003, both volatility
factors are higher and more volatile, which might be
driven by the Asian financial crisis, Russian default,
and Internet bubble burst. During this period, the VIX
index is higher (average at 25%) and the slope is also
more volatile, sometimes positively sloped, sometimes
negatively sloped. Between 2003 and 2007, the factors
are more stable, and the levels are generally lower. The
VIX index is back to a low level (average at 14%) again,
with term structure generally flat. From 2008 through
2009, the factors become much higher again and swing
fast, which seems to be driven by the 2008 financial
crisis. During the crisis, the VIX index shoots up to
above 50% and peaks at around 80%.

5. Conclusion
Motivated by existing and growing evidence on mul-
tiple macroeconomic volatilities, this paper extends
the one-factor Bansal and Yaron (2004) model with
an additional volatility. Our extension is strongly sup-
ported by the data over the conventional one-volatility
models in the literature. The introduction of the sec-
ond volatility factor leads to a significant, first-order
improvement in matching the standard features of
the equity market data considered in the literature,
such as return predictability and volatilities. Moreover,
the second volatility factor plays an important role
in accounting for the option markets data such as
the variance risk premium and VIX term structure.
However, the cross-section impact of the proposed
factor and the pricing power in other asset markets
are unknown and could serve as interesting topics for
future research.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2014.1962.
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Appendix
In this appendix, we provide condensed proofs of the key
results in the paper. Proofs of more results are available in
the online appendix.

Model Solution and Asset Pricing Results
We conjecture a solution for J of Equation (7) as the following
form:

J 4Wt1Xt1V1t1V2t5

= exp4A0 +A1Xt +A2V1t +A3V2t5
W 1−�

t

1 −�
1 (28)

and use standard log-linear approximation, which Campbell
(1993) developed in discrete time and Chacko and Viceira
(2005) used first in continuous time (an accuracy assessment
is provided at the end of this appendix). Specifically, let g1
be the long-term mean of the consumption–wealth ratio,

g1 = exp4E6ct −�t751 (29)

where the lowercase variables are the log variables.9 With the
standard log-linear approximation we have

Ct

Wt

= exp4ct −�t5≈ g1 − g1 logg1 + g1 log4Ct/Wt50 (30)

A key step is to derive consumption–wealth ratio explicitly
in terms of state variables to substitute out the wealth in the
value function. The first-order condition

fC = JW

leads to the consumption–wealth ratio as

Ct

Wt

= �� exp4A0a +A1aXt +A2aV1t +A3aV2t51

where Aia =Ai441 −�5/41 −�55 for i = 0111213. Substituting
out the wealth in J conjectured in Equation (8), the HJB
equation can be solved by giving Ai’s. The solution is approx-
imate in general and exact when � = 1. In particular, we
have

A1 =
1 −�

4g1 +�5�
1

which is negative when � > 1. In addition, A2 and A3 are both
positive, which means that a rise in long-run consumption
growth expectation increases the value function, whereas a
rise in consumption volatility lowers the value function.

Define a state price process or pricing kernel �t for any
security with dividend process Dt and price process Pt as

Pt =
1
�t

Et

[

∫ �

t
�sDs ds

]

0 (31)

In particular, for a risk-free asset with risk-free rate rf , we
have

−rf dt = Et

[

d�t

�t

]

0

9 It can be solved endogenously once the model parameters are
known. The details are available upon request.

The Euler equation can be expressed in a differential form

Et

(

dPt

Pt

)

+
Dt

Pt

dt = rf dt −Et

[

d�t

�t

dPt

Pt

]

0 (32)

Duffie and Epstein (1992) identify a state price process for
the above defined recursive utility as

�t = exp
[

∫ t

0
fJ 4Cs1 Js5 ds

]

fC4Ct1 Jt50 (33)

The wealth process is defined as the present value of con-
sumption stream as

Wt =
1
�t

Et

[

∫ �

t
�sCs ds

]

0 (34)

In our long-run risks model with two volatility factors, the
pricing kernel is projected onto the risk space spanned by
8Z1t1Z2t1w1t1w2t9 in Equation (3), and can be expressed as
Equation (12), which can be derived by applying Ito’s lemma
to Equation (33). The risk-free rate is given in Equation (11),
with the parameters

r0 = −

(

�1 + 4�1A2V̄1 +�2A3V̄25
1 −��

1 −�
−��

)

1

r1 =
1
�
1

r2 = 4g1 +�15A2
1−��
1−�

−
1
2

(

1 −��

1 −�

)2

4A2
1�

2
x�x +A2

2�
2
1 5

−
1
2
�4� + 15�c1

r3 = 4g1 +�25A3
1−��
1−�

−
1
2

(

1 −��

1 −�

)2

6A2
1�

2
x41 − �x5+A2

3�
2
2 7

−
1
2
�4� + 1541 − �c50

(35)

The market prices of risks are

�1 = �
√

V1t�c +V2t41 − �c51

�2 = −
1 −��

1 −�
A1�x

√

V1t�x +V2t41 − �x51

�3 = −
1 −��

1 −�
A2�1

√

V1t1

�4 = −
1 −��

1 −�
A3�2

√

V2t 0

(36)

Now we derive price–dividend ratio from the market
portfolio return defined as

rm1tdt ≡ Et

(

dPt

Pt

)

+
Dt

Pt

dt = rf dt −Et

[

d�t

�t

dPt

Pt

]

1 (37)

where rm1t is the continuous compound market portfolio
return. The price process is derived by Ito’s lemma and given
in Equation (13) with parameters

c1 = �2
d�d +�2

dc�c + 4�dx −A1m�x5
2�x + 4�dv −A2m�15

21

c2 = �2
d41 − �d5+�2

dc41 − �c5+ 4�dx −A1m�x5
241 − �x5

+ 4�dv2 −A3m�25
21

(38)
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and the parameters for the drift term are

c4 =�+�A1m1

c5 =
( 1

2A
2
1m�

2
x�x + 1

2A2m�
2
1 +A2m�1

−A1m�dx�x�x −A2m�1�dv

)

1

c6 =
( 1

2A
2
1m�

2
x41 − �x5+

1
2A3m�

2
2 +A3m�2

−A1m�dx�x41 − �x5−A3m�2�dv2

)

0 Q.E.D.

(39)

Predictability of Variables
The predictability regression coefficients defined in Equations
(15)–(17) are

�=
Cov4ã�Y 1p− d5

Var4p− d5
1 (40)

with ã�Y ≡ Yt+� −Yt , and

Cov4ã�Y 1p− d5

= −

[

a1A1m
�2
x

2�2
41 − e−�� 5+ a2A2m

�2
1 V̄1

2�2
1

41 − e−�1� 5

+ a3A3m
�2

2 V̄2

2�2
2

41 − e−�2� 5

]

1

with

Var4p− d5=A2
1m

�2
x

2�
+A2

2m
�2

1 V̄1

2�1
+A2

3m
�2

2 V̄2

2�2
0 (41)

Q.E.D.

Predictability of Volatilities
First, we note that the innovation process ut+1 in the AR(1)
process (19) is a discrete-time version of dZt in Equation (18).
Thus, in the continuous limit, the discrete realized volatility
defined in Equation (20) can be written as

Volt1 t+� =

∫ �

0

√

Vt�dZt� =
2

√
2�

∫ �

0

√

Vt dt1 (42)

where we have used the relation

�dZt� =
2

√
2�

dt

for a standard Brownian motion Zt . Then, a key step in
approximating the log of � period realized volatility in
Equation (42) is to use the following approximate equality:

ln
∫ �

0

√

Vt �dZt� ≈Const+
1

2�

∫ �

0

Vt

V̄
dt1 (43)

where V̄ is the unconditional mean of Vt , and � the horizon
of interest similar to K. Then, we can obtain approximately
the volatility predictive slope as

�vol =
Cov4ln6Volt+11 t+K71 p− d5

Var4p− d5
1 (44)

where

Cov4ã�y1p− d5 = −
1

2�V̄

[

b1A2m
�2

1 V̄1

2�2
1

41 − e−�1� 5

+ b2A3m
�2

2 V̄2

2�2
2

41 − e−�2� 5

]

1

with Var4p− d5 as given by Equation (41), and b1 and b2
given by b1 = c1 and b2 = c2 in the case of excess return
volatility; b1 = �c, b2 = 1 − �c in the case of consumption
growth volatility; and

b1 = �2
d�d +�2

dc�c +�2
dx�x +�2

dv1

b2 = �2
d41 − �d5+�2

dc41 − �c5+�2
dx41 − �x5+�2

dv2

in the final case of dividend growth volatility. Equation (44)
shows nicely how the volatilities are predicted by the price–
dividend ratio. Q.E.D.

Variance Risk Premium
We first derive the realized variance as

RVt =
1
�0
EP
t

[

∫ t+�0

t
Vs ds

]

= EP
t

[

∫ t+�0

t

1
�0

2
∑

i=1

ciVis ds

]

=

2
∑

i=1

ci

∫ t+�0

t
ds

1
�0
EP
t 6Vis71 (45)

where EP 6 · 7 denotes the expectation under physical proba-
bility. Using the volatility factor dynamics defined in Equa-
tion (3), we have

EP
t 6Vis7= V̄i + 4Vit − V̄i5e

−�i4s−t51 (46)

for i = 1, 2. Substituting Equation (46) into Equation (45), we
have

RVt =

2
∑

i=1

ci4A
P
i +BP

i Vit51 (47)

where AP
i and BP

i (i = 112) are constants given by

AP
i = V̄i

[

1 −
1 − e−�i�0

�i�0

]

1 BP
i =

1 − e−�i�0

�i�0
0

Then we derive the time t expected future realized vari-
ance over time period �0 under the risk-neutral probability.
The market prices of risk for V1t and V2t are �3 and �4 of
Equation (36); hence the associated risk premia are �1V1t
and �2V2t , which are proportional to V1t and V2t , and the
risk-neutral processes are also square-root processes. The
variance swap rate is given by

VSt =

2
∑

i=1

ci4A
Q
i +BQ

i Vit51 (48)

with AQ
i and BQ

i given as

AQ
i =

�iV̄i

�Q
i

[

1−
1−e−�

Q
i �0

�Q
i �0

]

1 BQ
i =

1−e−�
Q
i �0

�Q
i �0

0 (49)

Q.E.D.

Accuracy of the Log-linear Approximation
To assess the accuracy of the log-linear approximation solution
(28) for parameter values of our interest, we consider three
aspects. First, following Chacko and Viceira (2005), we know
that the accuracy depends on small variations of the standard
deviation of the log consumption–wealth ratio around its
unconditional mean. In our case, they are less than 1.8%.
Second, the additional volatility factor contributes less than
2% to the total standard deviation. This implies that the
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approximation error should be roughly the same as that for a
one-factor model. Third, we find a similar nontrivial and
tractable version of our two-factor model and verify that the
errors are indeed small. The tractable model is

dCt

Ct

=� dt +
√

Vt dZt1 dVt = �4V̄ −Vt5 dt +�
√

Vt dwt 0

The value function can be written as

J 4Vt1Ct5= eG4Vt 5
C1−�
t

1 −�
0 (50)

It can be shown that the solution for G4V 5 follows an ordinary
differential equation as

[

1
�
4�−�e�G4V 55+ 41 −�5

(

�−
�

2
V

)]

+�4V̄ −V 5
dG4V 5

dV

+
1
2
�2V

(

dG4V 5

dV

)2

+
1
2
�2V

d2G4V 5

dV 2
= 01 (51)

where � = 41/�−15/41−�5. The exact solution to this equation
can be calculated numerically. The numerical values are
indeed very close to those from the log-linear approximation.
Theoretically, however, care must be exerted that the log-linear
approximation of the aggregator f should be an increasing
function of J in parameter regions of interest. Otherwise,
the monotonicity axiom of preferences will be violated. (The
online appendix provides more details.)
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